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• Reference:

– “Analysis of Financial Time Series (3ed)” by Ruey S. Tsay, 2010.

(Chapter 2)

• Outline:

– Data handling

– ARIMA Model Building

– ARFIMA model

– Seasonal ARIMA model∗
– Generalized ARMA model

Note:
If you are not clear about the basic ARMA model, please read the textbooks such as

Hamilton (1994) and Tsay (2010). I also provide you a supplement of basic ARMA

model for further reading.
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1. Data Handling

1.1 Data Sources

• Book Website.

http://faculty.chicagobooth.edu/ruey.tsay/teaching/

fts3/

• Yahoo Finance.

http://finance.yahoo.com/

• Investing (	®!�¦!�½!�h!B7á�).

http://cn.investing.com/

• CEIC¥I²Lêâ¥.

http://webcdm.ceicdata.com/
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•bg£RESSET¤7KïÄêâ¥.

http://www.resset.cn/

•I�Sêâ¥.

http://www.gtarsc.com/

•WIND\Õ7Kªà.

http://www.wind.com.cn/

•À�ãLChoiceªà.

http://data.eastmoney.com/
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• Python + FRED (Federal Reserve Bank of St. Louis.)

http://research.stlouisfed.org/fred2/

import pandas_datareader.data as web

• Python + Tushare7K�êâ.

https://tushare.pro/

import tushare as ts

• Python + web html
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1.2 Data transformations

If the data is not normally distributed, it is often possible to normalize it

by data transformation.

• Logarithmic transformation: yt = log(xt) or yt = ln(xt);

For example, take a log of seasonal unadjusted GDP; take a log of

realized volatility.

• Box-Cox transformation (Box and Cox, 1964)

yt = h(xt, λ) =

{
(xλt − 1)/λ, if λ 6= 0;

log xt, if λ = 0.
(1)

for xt > 0, t = 1, . . . , n.
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• Variance stabilizing transformation.

By simple calculations for the exponential family distributions listed in

Table 1.

Table 1 The variance stabilizing transformation of some exponential family distributions

Normal Lognormal Gamma Beta Poisson Binomial

Parameter (µ, σ2)′ (µ, σ2)′ (α, α/µ)′ (τµ, τ(1− µ))′ µ µ/n

h(y) y ln y ln y arcsin
√
y

√
y arcsin

√
y/n

Var[h(y)] σ2 σ2 ψ1(α) ≈ 1/4(1 + τ) ≈ 1/4 ≈ 1/4n

Note: ψ() and ψ1() denote the digamma and trigamma functions, respectively.
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1.3 Detrending (Trend/Cycle decomposition)

Assume that a variable yt can be decomposed as:

yt = Tt + ct,

where Tt and ct denote trend component and cyclical component.

This is often used for decomposizing the GDP and unemployment rate.
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Five univariate methods are commonly used to extract cyclical

components in time series.

• Linear trend filter or quadratic trend filter.

• BN (Beveridge-Nelson, 1981) decomposition.

• HP (Hodrick-Prescott, 1981) filter.

• Frequency filtering techniques, for example BK (Baxter-King, 1999)

filter, CF (Christiano-Fitzgerald, 2003) filter.

• Unobservable components models, for example Harvey (1985), Clark

(1987), Harvey and Jaeger (1993).

SeexÍIÚ�_(5²LïÄ62010c110Ï)
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Figure 1 Trend/Cycle decomposition for the U.S. GDP (in logarithm ×100) using quadratic filter, HP filter, BK filter, and CF

filter.
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The HodrickõPrescott Filter

One popular example is the ad hoc trend extraction filter proposed by

Hodrick and Prescott (1981→1997).

HP define the estimator of the trend as the minimiser of the penalised

least square criterion:

PLS =

T∑
t=1

(yt − µt)2 + λ

T∑
t=3

(∆2µt)
2,

where the first summand measures fidelity (°(Ý) and the second

roughness (o÷Ý); λ is the smoothness parameter governing the

trade-off between them (λ = 1600 for quarterly series; = 14400 for

monthly series).
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Unobservable components models

A classic trend/cycle decomposition model is given as follows:

yt = τt + ct (2)

τt = τt−1 + gt−1 + ut (3)

gt = gc+ λgt−1 + wt, (4)

ct = φ1ct−1 + φ2ct−2 + vt (5)

where yt is log GDP; τt is its trend component follows a random walk

with a stochastic drift or growth rate which is an autoregressive process;

ct is the cycle component.

When λ = σw = 0, this becomes the Watson (1986) model.

When gc = 0 and λ = 1, this becomes the Clark (1987) model.
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1.4 Lag operator and Differencing

• Lag operator (L) or backshift operator (B). For example, given some

time series {y1, y2, . . .}, then

Lyt = yt−1 for all t > 1.

• Lag operator can be raised to arbitrary integer powers so that

L−1yt = yt+1, and Lkyt = yt−k.

• First difference operator ∆ = (1 − L) is a special case of lag

polynomial. Then ∆yt = yt − yt−1 = (1− L)yt.
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For difference operator, we have the following results:

• The first difference operator: ∆yt = (1− L)yt;

• The second difference operator: ∆2yt = (1−L)2yt = (1−2L+L2)yt =

yt − 2yt−1 + yt−2;

• The above approach generalises to the i-th difference operator

∆iyt = (1− L)iyt;

• Log-First-Difference: ∆ ln yt = ln yt − ln yt−1.
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Now if consider the change between yt and yt−k, we can use notation

of difference operator by ∆kyt = (1 − Lk)yt. Similarly, we have the

following results:

• The seasonal difference operator: ∆12yt = (1−L12)yt if monthly data;

∆4yt = (1− L4)yt if quarterly data;

• Year over year change: ∆12 ln yt = (1 − L12) ln yt = ln(yt/yt−12) if yt
is an aggregated monthly time series.
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Figure 2 Comparison of ∆ log(GDPt) and ∆4 log(GDPt) for China’s quarterly GDP.
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1.5 Temporal aggregation

We consider temporal aggregation of a variable with quarterly and

monthly growth rates.

• If yqt is a quarterly stock variable, it is easily shown that

yqt = ymt + ymt−1 + ymt−2.

• If yqt is a quarterly flow variable, we have

yqt =
1

3

(
ymt + 2ymt−1 + 3ymt−2 + 2ymt−3 + ymt−4

)
.

• See Mariano and Murasawa (2003) andxÍIÚ�_ (2013)
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1.6 Seasonality and seasonal adjustment

The investigation of many economic time series becomes problematic

due to seasonal fluctuations.

Time series are made up of four components:

• St: The seasonal component;

• Tt: The trend component;

• Ct: The cyclical component;

• It: The error, or irregular component.

Chapter two Linear Time Series Analysis c© 2022 WISE-SOE XMU 18



Different statistical research groups have developed different methods

of seasonal adjustment, for example

• X-11-ARIMA, X-12-ARIMA and X-13-ARIMA-SEATS in many

softwares such as SAS, Eviews, OxMetrics, R and Python developed

by the United States Census Bureau ({I<�N�Û);

• TRAMO/SEATS in Eviews developed by the Bank of Spain;

• STAMP in OxMetrics developed by a group led by S. J. Koopman.

• STL in R and Python developed by Cleveland, et al., 1990, “STL: A

Seasonal-Trend Decomposition Procedure Based on Loess”, Journal

of Official Statistics, 6(1), 3-73.
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BSM model in STAMP*

The basic structural model (BSM) is formulated in terms of trend,

seasonal, and irregular components. It can be represented by

yt = τt + γt + εt, εt ∼ iidN(0, σ2
ε), (6)

where τt is a stochastic trend, γt is a stochastic seasonal component,

and εt is an irregular component; see Harvey (1989).

The trend is specified in the following way:

τt = τt−1 + βt−1 + ηt, ηt ∼ iidN(0, σ2
η) (7)

βt = βt−1 + ζt, ζt ∼ iidN(0, σ2
ζ), (8)

where βt is the slope, ηt and ζt are assumed to be mutually independent.
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The seasonal component γt is often specified in two ways such as

dummy-variable seasonality and trigonometric seasonality, see Harvey

et al. (1998) and Commandeur and Koopman(2007).

A time-varying dummy seasonal specification is given by

s−1∑
i=0

γt−i = et, (9)

where s is the seasonal length, et is an i.i.d. normal variable with mean

zero and variance σ2
e, i.e., et ∼ iidN(0, σ2

e).

• In the limiting case σ2
e = 0, the seasonal effects are fixed over time.

• Commonly, s = 4 for quarterly data and s = 12 for monthly data.
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2 ARIMA Model Building

Detailed introduction of AR, MA and ARMA models are referred to the

books in Hamilton (1994) and Tsay (2010). In this section, I will give

you a short review for model building.

An effective procedure for building empirical time series models

(ARIMA) is the Box-Jenkins approach, which consists of three stages:

• model specification,

• estimation,

• diagnostics checking.

Forecasts follow directly from the form of fitted model.
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For ARIMA models, the modelling sequence can be usually described

as follow (see the Figure):
4. Model Building

Base Series
(ACF, PACF,etc)

Plot the Data
(trans, diff,season)

Input Data

Stationarity 
Difference

Differenced Series
(ACF,PACF,EACF)

Identification

(which model)

New Model
(modification)

Model Checking

(adequate?)

Parameter 
Estimation

YES

NO

Forecasting
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2.1 Model-specification

Correlation approach

The basic tools used in this approach of model specification

include (a) sample autocorrelation function (ACF), (b) sample partial

autocorrelation function (PACF), and (c) extended autocorrelation

function (EACF). The function of these tools can be summarized as

Function Model Feature

ACF MA(q) Cutting-off at lag q, i.e.

ρi 6= 0 for i <= q and ρi = 0 for i > q

PACF AR(p) Cutting-off at lag p

EACF ARMA(p, q) A triangle with vertex (p, q)
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(1) Extended Autocorrelation Function (EACF)

See Tsay and Tiao (1984, JASA)

Consider the ARMA(p, q) model given by

(1− φ1L− · · · − φpLp)(yt − µ) := wt = (1 + θ1L+ · · ·+ θqL
q)εt.

The correlation coefficient ρj satisfies that

ρj − φ1ρj−1 − · · · − φpρj−p = 0, for j > q,

then the ACF satisfy the difference equation φ(L)ρj = 0 for j > q with

ρ1, . . . , ρq as initial conditions.
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Consider the above Eqs. of ACF for j = q + 1, q + 2, . . . , q + p, we have
ρq+1

ρq+2

...

ρq+p

 =


ρq ρq−1 · · · ρq+2−p ρq+1−p

ρq+1 ρq · · · ρq+3−p ρq+2−p
... ... . . . ... ...

ρq+p−1 ρq+p−2 · · · ρq+1 ρq



φ1

φ2

...

φp

 ,

which is referred to as a p-order generalized Yule-Walker equation for

the ARMA(p, q) process. It can be used to solve for φi’s given the ρi’s.

Given the sample ACF, the AR coefficients can be consistently

estimated in the following cases!

• The lags p and q are correctly specified.

• The lag q is greater than the true value q∗ under the correct p.
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Again,

φ(L)yt = xt = c+ θ(L)εt

Its basic idea is based on the “generalized” Yule-Walker equation.

Conceptually, it involves two steps:

• In the first step, obtain consistent estimates of AR coefficients.

– Given such estimates, we can transform the ARMA series into a

pure MA process.

• The second step then uses the sample ACF of the transformed MA

process to identify the MA order q.
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Again,

φ(L)yt = xt = c+ θ(L)εt

To make use of the EACF for model specification, we consider the two-

way table:

AR MA (or j)

m 0 1 2 3 4 · · ·

0 ρ1 ρ2 ρ3 ρ4 ρ5 · · ·

1 ρ1,1 ρ1,2 ρ1,3 ρ1,4 ρ1,5 · · ·

2 ρ2,1 ρ2,2 ρ2,3 ρ2,4 ρ2,5 · · ·

3 ρ3,1 ρ3,2 ρ3,3 ρ3,4 ρ3,5 · · ·
... ... ...

where ρm,j+1 denotes the ACF(j + 1) for the MA(j) process of xt when

considering the ARMA(m, j) for yt.
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In practice, the EACF in the above table is replaced by its sample counterpart.

Suppose that zt is an ARMA(1,1) model, then the corresponding EACF table is

AR MA (or j)

m 0 1 2 3 4 5 · · ·

0 X X X X X X · · ·

1 X O O O O O · · ·

2 * X O O O O · · ·

3 * * X O O O · · ·

4 * * * X O O
where “X” and “O” denote non-zero and zero quantities, respectively, “*” represents a

quantity which can assume any value between −1 and 1. Note that:

ARMA(1,1): (1− φ1L)yt = (1 + θ1L)εt

=⇒ ARMA(2,2): (1− φ1L)(1− φ2L)yt = (1 + θ1L)(1− φ2L)εt.
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Figure 3 ESACF table for log realized volatility of S&P 500 index.
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(2) Model Selection Criteria

Alternatively, statistical model selection criteria may be used. The idea

is to fit all ARMA(p, q) models with orders p ≤ pmax and q ≤ qmax and

choose the values of p and q which minimizes some model selection

criteria.

Model selection criteria for ARMA(p, q) models have the form

MSC(p, q) = ln(σ̃2(p, q)) + cn · ψ(p, q)

where σ̃2(p, q) is the MLE of Var(εt) = σ2 without a degrees of freedom

correction from the ARMA(p, q) model, cn is a sequence indexed by the

sample size n, and ψ(p, q) is a penalty function which penalizes large

ARMA(p, q) models.
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The two most common information criteria are the Akaike (AIC) and

Schwarz- Bayesian (BIC): (Akaike, 1974; Schwarz, 1978)

AIC(p, q) = ln(σ̃2(p, q)) +
2

n
(p+ q),

BIC(p, q) = ln(σ̃2(p, q)) +
lnn

n
(p+ q).

• The AIC criterion asymptotically overestimates the order, since the

penalty term is smaller for AIC than BIC (2 < lnn).

• The BIC estimates the order consistently under fairly general

conditions if the true orders p and q are less than or equal to pmax

and qmax.

• However, in finite samples the BIC generally shares no particular

advantage over the AIC.
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Example 1. AR model of U.S. ∆inflation, lags 0 - 6, see Table 2

Table 2 Information criteria

#Lags BIC AIC R2

0 1.095 1.076 0.000

1 1.067 1.030 0.056

2 0.955 0.900 0.181

3 0.957 0.884 0.203

4 0.986 0.895 0.204

5 1.016 0.906 0.204

6 1.046 0.918 0.204

• BIC chooses 2 lags, AIC chooses 3 lags.

• For R2, you would (always) select the largest possible number of lags.
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2.2 Estimation methods

Several estimation method are available for AR models and ARMA

models. We do not expand this.

• AR models: Original least square; Unconditional least square;

Yule-Walker estimator; Conditional maximum likelihood estimator;

Maximum likelihood estimator.

• ARMA models: Conditional least square; Unconditional least square;

Conditional maximum likelihood estimator; Maximum likelihood

estimator.

• MA models: the same as ARMA models
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3.3 Diagnostic testing on residuals

(1) Autocorrelation

1. Sample ACF of the residuals, given by

rk(ε̂) =

∑n
t=k+1 ε̂tε̂t−k∑n
t=k+1 ε̂

2
t

∼ N(0, 1/n), (10)

2. Joint significance of the first m residual autocorrelations. The

test-statistic developed by Ljung and Box (1978), given by (for an

ARMA(p, q) model)

LB(m) = n(n+ 2)

m∑
k=1

(n− k)−1r2
k(ε̂) ∼ χ2(m). (11)
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(2) Homoscedasticity

Neglecting heteroscedasticity of the residuals leads to

• ordinary t-statistics cannot be used.

• confidence intervals for forecasts can no longer be computed in the

usual manner.

Davidson and MacKinnon (1985) and Wooldridge (1990, 1991) discuss

general principles for constructing heteroscedasticity-consistent test

statistics.

In standard statistical or econometric software, it provides heteroscedasticity-

consistent t-statistic for parameter estimates.
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Testing for heteroscedasticity

Portmanteau test statistic on (standardized) squared residuals

developed by McLeod and Li (1983):

McL(m) = n(n+ 2)

m∑
k=1

(n− k)−1r2
k(ε̂

2). (12)

When applied to the residuals from an ARMA(p, q) model, the McL test

has an asymptotic χ2(m) distribution, again provided that m/n is small

and m is moderately large.
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(3) Normality

Defining the jth moment of the estimated (standardized) residuals as

m̂j =
1

n

n∑
t=1

ε̂jt ,

the skewness and kurtosis of ε̂t can be calculated as

ŜK ε̂ =
m̂3√
m̂3

2

, and K̂ε̂ =
m̂4

m̂2
2

.

Under the null hypothesis of normality,
√
n/6 · ŜK ε̂ ∼ N(0, 1) and√

n/24 · (K̂ε̂ − 3) ∼ N(0, 1).

A joint test for normality (Jarque and Bera, 1987) is then given by

JB =
n

6
ŜK

2

ε̂ +
n

24
(K̂ε̂ − 3)2 ∼ χ2(2). (13)
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3. Long Memory Time Series

• {yt} is I(0): its ACF declines at a geometric rate. As a result, I(0)

process have short memory since observations far apart in time are

essentially independent.

• {yt} is I(1): its ACF declines at a linear rate and observations far

apart in time are not independent. See the supplement of basic

ARMA model.

• {yt} is fractionally integrated I(d), where 0 < d < 1: The

ACF declines at a polynomial (hyperbolic) rate, which implies that

observations far apart in time may exhibit weak but non-zero

correlation. This weak correlation between observations far apart is

often referred to as long memory.
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(1) Fractionally integrated process

A fractionally integrated white noise process yt has the form

(1− L)dyt = εt, εt ∼WN(0, σ2), (14)

where the differencing operator (1 − L)d has the binomial series

expansion representation (valid for any d > −1)

(1− L)d =

∞∑
k=0

(
d

k

)
(−L)k, (15)

where the binomial coefficients
(
d
k

)
are defined by

(
d

k

)
=
d(d− 1)(d− 2) · · · (d− k + 1)

k!
,

Chapter two Linear Time Series Analysis c© 2022 WISE-SOE XMU 40



and we have

(−1)k
(
d

k

)
=
−d(1− d)(2− d) · · · (k − 1− d)

k!
=

Γ(k − d)

Γ(−d)Γ(k + 1)

since Γ(t+ 1) = tΓ(t) and k! (read as k factorial) is

k! = Γ(k + 1) = 1 · 2 · 3 · · · (k − 1) · k, with 0! = 1.

Using these definitions, we can rewrite (11) as

(1− L)d = 1− dL+
d(1− d)

2!
L2 − d(1− d)(2− d)

3!
L3 + · · ·

=

∞∑
k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk.

Chapter two Linear Time Series Analysis c© 2022 WISE-SOE XMU 41



• If d = 1 then yt is a random walk and if d = 0 then yt is white noise.

• If d < 0.5, then yt is a weakly stationary process and has the infinite MA

representation

yt = εt +

∞∑
i=1

ψiεt−i

with

ψk =
d(1 + d) · · · (k − 1 + d)

k!
=

Γ(k + d)

Γ(d)Γ(k + 1)
.

• If d > −0.5, then yt is invertible and has the infinite AR representation

yt =

∞∑
i=1

πiyt−i + εt

with

πk =
−d(1− d) · · · (k − 1− d)

k!
=

Γ(k − d)

Γ(−d)Γ(k + 1)
.
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• For −0.5 < d < 0.5 it can be shown that

ρk =
d(1 + d) · · · (k − 1 + d)

(1− d)(2− d) · · · (k − d)
=

Γ(k + d)

Γ(1 + k − d)

Γ(1− d)

Γ(d)
,

for k = 1, 2, . . . . In particular, ρ1 = d/(1− d) and

ρk '
Γ(1− d)

Γ(d)
k

2d−1 ∝ k2d−1

as k → ∞ so that the ACF for yt declines hyperbolically to zero at a speed that

depends on d.

• For −0.5 < d < 0.5, the PACF of yt is φk,k = d/(k − d) for k = 1, 2, . . ..

• Further, it can be shown yt is stationary and ergodic for 0 < d < 0.5 and that the

variance of yt is infinite for 0.5 ≤ d < 1.

• The process is said to exhibit intermediate memory (anti-persistence), or long-

range negative dependence, for d ∈ (−0.5, 0).
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(2) Testing long memory

Geweke and Porter-Hudak (1983) proposed a semiparametric

procedure to obtain an estimate of the memory parameter d of a

fractionally integrated process Xt in a model of the form

(1− L)dXt = εt,

where εt is stationary with zero mean and continuous spectral density

fε(λ) > 0.

The estimate d̂ is obtained from the application of OLS to the regression

log(IX(λs)) = c− d log
∣∣1− eiλs∣∣2 + εs, (16)

where the frequencies λs = 2πs
n , s = 1, . . . ,m, m� n.
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We define ωX(λs) = 1√
2πn

∑n
t=1Xte

itλs as the discrete Fourier transform

(dft) of the time series Xt, IX(λs) = ωX(λs)ωX(λs) as the periodogram,

and xs = log
∣∣1− eiλs∣∣. Ordinary least squares on (12) yields

d̂ = 0.5

∑g(T )
s=1 xs log IX(λs)∑g(T )

s=1 x
2
s

.

• A choice of m = g(T ) =
√
T is often employed.

• Two estimates of the d coefficient’s standard error are commonly

employed:

– the regression standard error, giving rise to a standard t-test;

– an asymptotic standard error, based upon the theoretical variance

of the log periodogram of π2/6.

Chapter two Linear Time Series Analysis c© 2022 WISE-SOE XMU 45



(3) ARFIMA(p, d, q) model

A fractionally integrated process with stationary and ergodic ARMA(p, q)

errors

(1− L)dyt = ut, ut ∼ ARMA(p, q)

is called an autoregressive fractionally integrated moving average

(ARFIMA) process, i.e.

φ(L)(1− L)dyt = θ(L)εt.

Estimation routines for general ARFIMA models, which include

additional AR and MA parts in (10) are proposed in Sowell (1992) and

Beran (1995).
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Reading

The readers are recommend to refer to ”A Package for Estimating,

Forecasting and Simulating Arfima Models: Arfima package 1.04 for

Ox” by JURGEN A. DOORNIK AND MARIUS OOMS.

We can use this model in OxMetrics to forecast empirical time series.
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4 Seasonal ARIMA∗

4.1 Pure seasonal ARMA

Let us assume that there is seasonality in the data, but no trend. Then

we could model the data as

xt = st + yt, (17)

where yt is a stationary process. The seasonal component is such that

st = st−h,

where h denotes the length of the period and
∑h
k=1 sk = 0.
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By differencing at lag h, we can remove the seasonality from the data

∆hxt = xt − xt−h = xt − Lhxt = (1− Lh)xt

= st + yt − st−h − yt−h = ∆hyt.

Model: This fact leads to introducing the seasonal ARMA model,

denoted by ARMA(P,Q)h, which is of the form

Φ(Lh)xt = Θ(Lh)εt, (18)

where

Φ(Lh) = 1− Φ1L
h − Φ2L

2h − · · · − ΦPL
Ph,

and

Θ(Lh) = 1−Θ1L
h −Θ2L

2h − · · · −ΘQL
Qh.
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Remark 1. Analogously to ARMA(p, q), the ARMA(P,Q)h model is

causal only when the roots of Φ(zh) lie outside the unit circle, and it

is invertible only when the roots of Θ(zh) lie outside the unit circle.
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4.2 Mixed Seasonal ARMA

When we combine seasonal and non-seasonal operators we obtain a

model

Φ(Lh)φ(L)xt = Θ(Lh)θ(L)εt,

which is called mixed seasonal ARMA and it is denoted by

ARMA(p, q)×ARMA(P,Q)h

Chapter two Linear Time Series Analysis c© 2022 WISE-SOE XMU 51



4.3 Seasonal ARIMA

Mixed seasonal ARMA is a stationary process. In practice however

we often have nonstationary processes. Seasonal nonstationarity can

occur when the process is nearly periodic in the season and the

seasonal component varies slowly from period to period (say from year

to year) according to a random walk, that is

st = st−h + vt

where vt is a white noise.

We can subtract the effect of the season (say month) using the lag

operator Lh to obtain seasonal stationarity

xt − xt−h = (1− Lh)xt
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This is a seasonal difference of order 1. In general we define a seasonal

difference of order D as

∆D
h xt = (1− Lh)Dxt,

where D = 1, 2, . . .. Usually D = 1 is sufficient to obtain seasonal

stationarity.

This leads to a very general seasonal autoregressive integrated moving

average (SARIMA) model written as follows

Φ(Lh)φ(L)∆D
h ∆dxt = α+ Θ(Lh)θ(L)εt, (19)

and denoted by ARIMA(p, d, q)× (P,D,Q)h.
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Example 2. The model ARIMA(0, 1, 1) × (0, 1, 1)12 with α = 0 is often

applied for various economic data. Using formula (15) we obtain

(1− L12)(1− L)xt = (1 + ΘL12)(1 + θL)εt

or, when expanded, we get the following form

(1− L− L12 + L13)xt = (1 + θL+ ΘL12 + ΘθL13)εt,

or

xt = xt−1 + xt−12 − xt−13 + εt + θεt−1 + Θεt+12 + Θθεt−13.
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5 Generalized ARMA Models∗

Referenced paper:

• Benjamin, M. A., Rigby, R. A., Stasinopoulos, D. M., (2003),

Generalized autoregressive moving average models. Journal of the

American Statistical Association.

• Zheng, TG, Xiao, H., and Chen, R., (2015), Generalized ARMA

models with martingale difference errors. Journal of Econometrics.
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5.1 GARMA Models - Benjamin et al. (2003)

Let {yt} be a (non-Gaussian) time series and Ft = {yt, yt−1, . . .} be a

past information set up to time t. The GARMA model is given by

f(yt|Ft−1) = exp

{
ytϑt − b(ϑt)

ϕ
+ a(yt, ϕ)

}
−→ Exponetial Family, (20)

ηt ≡ g(µt) = ν +

p∑
j=1

φjg(yt−j) +

q∑
j=1

δj[g(yt−j)− ηt−j], (21)

where ϑt and ϕ are the canonical and scale parameters, and µt =

b′(ϑt) = E(yt|Ft−1) and Var(yt|Ft−1) = ϕb′′(ϑt), respectively. The

function g(·) is called a link function. It is assumed that the transformed

mean follows a seemingly ARMA process. The quantity ηt is called

the linear predictor. The link function g(·) is restricted to a one-to-one

function hence it can be inverted to obtain µt = g−1(ηt).
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By adding g(yt)− ηt to both sides of (17), we have

g(yt) = ν +

p∑
j=1

φjg(yt−j) + εt +

q∑
j=1

δjεt−j, (22)

where εt = g(yt)− ηt = g(yt)− g(µt).

• Obviously (18) shows that under GARMA model, g(yt) assumes

exactly a standard ARMA model formulation Benjamin et al. (2003).

• The only difference is that the error sequence εt is not a MDS in most

of the cases. Note that

E(εt | Ft−1) = E[g(yt) | Ft−1]− g(µt) 6= 0,

unless g(·) is an identity function.

Chapter two Linear Time Series Analysis c© 2022 WISE-SOE XMU 57



5.2 M-GARMA Model

Zheng et al. (2015) assume that the conditional distribution p(yt | Ft−1)

can be parametrized as

p(yt | Ft−1) = f(yt | µt, ϕ), (23)

where ϕ is a collection of time invariant parameters hence all past

information is summarized in µt. In addition, let

gϕ(µt) = ν +

p∑
j=1

φjh(yt−j) +

q∑
j=1

δj[h(yt−j)− gϕ(µt−j)], (24)

where gϕ(µt) = E[h(yt) | Ft−1] serves as the link function in the

terminology of GLM (generalized linear model).

Chapter two Linear Time Series Analysis c© 2022 WISE-SOE XMU 58



By adding h(yt)− gϕ(µt) to both sides of (20), we have

h(yt) = ν +

p∑
j=1

φjh(yt−j) + εt +

q∑
j=1

δjεt−j, (25)

where εt = h(yt)− gϕ(µt).

• It is clear by this construction of the pair of link functions (h(·), gϕ(·))
that εt is now a MDS.

• In the following we refer to gϕ(·) as the link function and h(·) the y-link

function.
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Table 3 Some commonly used conditional distributions, their recommended y-link functions, the corresponding link

functions, and the conditional variances of the resulting MDS.

density E[yt|Ft−1] Var[yt|Ft−1]

Lognormal logN(log(µt)− σ
2/2, σ2) µt (eσ

2
− 1)µ2

t

Gamma Gam(cµdt , cµ
d−1
t ) µt µ2−d

t /c

Inverse-Gamma Inv-Gam(cµd−1
t + 1, cµdt ) µt cµ1+d

t /(cµd−1
t − 1)

Weibull Weibull(k, µt/Γ(1 + k−1)) µt µ2
t

[
Γ(1+2k−1)

Γ2(1+k−1)
− 1

]
Beta Beta(τµt, τ(1− µt))

′ µt
µt(1− µt)

1 + τ

Poisson Poisson(µt) µt µt

h(yt) gϕ(µt) Var[h(yt)|Ft−1]

Lognormal log(yt) log µt −
1

2
σ2 σ2

Gamma log(yt) ψ(cµdt )− (d− 1) log(µt)− log(c) ψ1(cµdt )

Inverse-Gamma log(yt) d log(µt) + log(c)− ψ(cµd−1
t + 1) ψ1(cµd−1

t + 1)

Weibull log(yt) ≈ log µt − 1
2

[
Γ(1+2k−1)

Γ2(1+k−1)
− 1

]
≈ Γ(1+2k−1)

Γ2(1+k−1)
− 1

Beta log(yt/1− yt) ψ(τµt)− ψ(τ(1− µt)) ψ1(τµt) + ψ1(τ(1− µt))

Poisson √
yt ≈ √µt ≈

1

4

Note: The functions ψ(·) and ψ1(·) are the digamma and trigamma functions, respectively.
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5.3 Two specific M-GARMA models

(a) Log Gamma-M-GARMA model: Consider the following Gamma-

M-GARMA(p, q) model with the y-link function h(yt) = log yt,

yt|Ft−1 ∼ Gam(cµdt , cµ
d−1
t ), log yt = ν +

p∑
j=1

φj log yt−j + εt +

q∑
j=1

δjεt−j,

with εt = log yt − gc,d(µt), where

• cµdt and cµd−1
t are the shape and rate parameters of Gamma

distribution;

• µt = E[yt|Ft−1];

• The link function gc,d(µt) = ψ(cµdt )− (d− 1) logµt − log c;
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• The conditional variance Var[εt|Ft−1] = ψ1(cµdt ), where ψ(·) and ψ1(·)
are digamma and trigamma functions, respectively.

•When d = 0, the link function gc,d(µt) = logµt + ψ(c) − log c differs

from the y-link function by a constant, and the conditional variance is

also a constant, i.e. Var[εt|Ft−1] = ψ1(c).

•When using an identity transformation, i.e., h(yt) = yt, the M-

GARMA becomes the multiplicative error models (MEM) given by

Engle (2002), Engle and Gallo (2006) and Brownlees et al. (2012).
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(2) Logit-Beta-M-GARMA model:

The model can be used for proportion time series where the

observations take value in (0, 1). We consider the logit y-link h(yt) =

logit(yt) = log[yt/(1− yt)], and the model is given

yt|Ft−1 ∼ Beta(τµt, τ(1− µt)), (26)

logit(yt) = ν +

p∑
j=1

φjlogit(yt−j) + εt +

q∑
j=1

δjεt−j, (27)

with εt = logit(yt) − gτ(µt), where τµt and τ(1 − µt) are two positive

shape parameters of Beta distribution.

The link function and conditional variance are given by gτ(µt) =

ψ(τµt) − ψ(τ(1 − µt)) and Var[h(yt)|Ft−1] = Var(εt|Ft−1) = ψ1(τµt) +

ψ1(τ(1− µt)) respectively.
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