
A Realized Stochastic Volatility Model With
Box–Cox Transformation

Tingguo ZHENG
Wang Yanan Institute for Studies in Economics, Xiamen University, Fujian 361005, China (zhengtg@gmail.com)

Tao SONG
Institute of Economics, School of Economics, Xiamen University, Fujian 361005, China (songtao@xmu.edu.cn)

This article presents a new class of realized stochastic volatility model based on realized volatilities and
returns jointly. We generalize the traditionally used logarithm transformation of realized volatility to the
Box–Cox transformation, a more flexible parametric family of transformations. A two-step maximum
likelihood estimation procedure is introduced to estimate this model on the basis of Koopman and Scharth
(2013). Simulation results show that the two-step estimator performs well, and the misspecified log
transformation may lead to inaccurate parameter estimation and certain excessive skewness and kurtosis.
Finally, an empirical investigation on realized volatility measures and daily returns is carried out for several
stock indices.
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1. INTRODUCTION

In financial economics and mathematical finance, stochas-
tic volatility (SV) is one of the main concepts used to deal
with time-varying volatility and codependence found in finan-
cial markets. As an alternative to GARCH class of models, SV
class of models has received substantial attention. Many SV
models have been used by financial econometricians to model
time-varying volatilities for financial time series, such as stock
prices, exchange rates, and interest rates (see Taylor 1986b;
Harvey, Ruiz, and Shephard 1994; Jacquier, Polson, and Rossi
1994; Kim, Shephard, and Chib 1998; Chib, Nardari, and Shep-
hard 2002, and others).

Most stochastic volatility models are based on financial as-
set returns and their conditional volatility processes typically
contain variables based on squared or absolute returns. How-
ever, as pointed out by Alizadeh, Brandt, and Diebold (2002),
Chou (2005), Brandt and Diebold (2006), and other authors, the
returns-based SV models are inaccurate and inefficient, because
they are based on the closing prices of the reference period, and
thus fail to use the information contents inside the reference
period. In addition, the estimation of SV models has proved
quite difficult. It is well known that simple estimators such
as the moment-based methods and the quasi-maximum likeli-
hood (QML) approach are highly inefficient, and most other
simulation-based estimators are computationally intensive (see
Broto and Ruiz 2004 for a survey and performance comparison
of some of these estimation techniques).

Recently, realized volatility or realized variance, introduced
by Andersen and Bollerslev (1998), Andersen et al. (2001),
and Barndorff-Nielsen and Shephard (2001), has been used
for modeling stochastic volatility. One of the commonly used
terms is the sum of squared high-frequency returns over a cer-
tain interval such as a day, and provides a consistent estimator
of the latent volatility under an ideal market assumption. See
Andersen, Bollerslev, and Diebold (2010) for a survey of re-
alized volatility. When high-frequency data are available, real-

ized volatility seems to be an appropriate measure of volatility.
Barndorff-Nielsen and Shephard (2002) studied the use of re-
alized volatility in estimating stochastic volatility, and showed
that model-based methods may be particularly helpful in esti-
mating historical records of actual volatility. However, there
are two severe issues in measuring daily realized volatility
from high frequency return data: the presence of nontrading
hours and the presence of the market microstructure noise in
transaction prices, which may lead to downward bias and up-
ward bias in estimating the latent volatility, respectively (see
Hansen and Lunde 2005 and Hasbrouck 2007 for details, and
McAleer and Medeiros 2008 for a review of the realized volatil-
ity and effects of the microstructure noise). From this point
of view, some studies such as those by Takahashi, Omori, and
Watanabe (2009) and Koopman and Scharth (2013) model re-
alized volatility and daily returns simultaneously based on the
well-known (log-normal) stochastic volatility model, assuming
that the realized volatility includes the microstructure noise but
still contains a great deal of information on the latent volatility.
On the other hand, daily returns contain less noise but do not
include the sufficient information on the latent volatility. They
showed that this model can estimate realized volatility biases
and parameters simultaneously.

For modeling the positive-valued random variables of real-
ized volatility, the use of transformations is very common and
may be helpful when the original model does not satisfy the
usual assumption. A natural choice for transforming the real-
ized volatility data is the logarithm transformation. It was shown
by Barndorff-Nielsen and Shephard (2005) that the finite sample
distribution of log transformation of realized volatility is closer
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to the asymptotic standard normal distribution than that of a
nontransformed version of realized volatility. Most empirical
studies focus on the log transformation in volatility estimation
and forecasting, for example, Andersen et al. (2001), Takahashi,
Omori, and Watanabe (2009), and Koopman and Scharth (2013).
However, a more flexible power transformation should be the
Box–Cox transformation. This transformation controlled by
the transformation parameter contains the logarithm version and
the raw version as special cases. Moreover, a Box–Cox transfor-
mation for realized volatility may be closer to normal than the
logarithm transformation, given an appropriate transformation
parameter. The simulation evidence presented by Gonçalves and
Meddahi (2009) shows that log transformation does not com-
pletely eliminate skewness in finite samples, and Gonçalves
and Meddahi (2011) further suggested an appropriate Box–
Cox transformation to reduce the finite sample skewness more
effectively.

In this article, we aim to generalize the realized stochas-
tic volatility model to a more general version with the Box–
Cox transformation, hereafter referred to as the realized BCSV
model. Although the Box–Cox transformation has been used for
the returns-based SV model in past studies such as Yu, Yang,
and Zhang (2006) and Zhang and King (2008), our extension
of the model differs significantly from theirs, as we introduce
multiple realized volatility measures to help in estimating the
stochastic volatility. In addition, although Gonçalves and Med-
dahi (2011) also suggested the Box–Cox transformation for
realized volatility and studied the accuracy based on the theory
of Edgeworth expansions, they did not develop any economet-
ric method to analyze this class of nonlinear transformation for
volatility modeling and forecasting.

To estimate the realized BCSV model, we present a two-step
maximum likelihood estimation procedure based on the study of
Koopman and Scharth (2013). Due to the additional complexity
of having the Box–Cox transformation in the model, it is not
easy to estimate the realized BCSV model directly. However,
for the joint analysis of returns and realized measures, the max-
imum likelihood estimation can be divided into two parts: for
one part we put the realized measures into a transformed state
space form and its likelihood function can be carried out via
Kalman filter and smoother; and for the other part we implement
maximum likelihood estimation by evaluating the expectation
of the product of return densities conditional on realized mea-
sures. This two-step estimator is consistent (shown by Koopman
and Scharth 2013) and the estimation procedure is much simpler
than the Bayesian estimation method using Markov chain Monte
Carlo (MCMC) technique developed by Takahashi, Omori, and
Watanabe (2009).

The rest of this article is organized as follows. Section 2
contains detailed description of the realized BCSV model con-
sidered. In Section 3, we present the two-step estimator for
the proposed model. The Monte Carlo simulation experiment is
conducted in Section 4 to evaluate the finite sample performance
of the two-step estimator and the impacts of model misspeci-
fication on parameter estimation and excessive skewness and
kurtosis. Empirical applications to stock returns and realized
measures of several stock indices are presented in Section 5.
The final section presents conclusions.

2. THE REALIZED BCSV MODEL

2.1 Realized Volatility and Transformation

The realized volatility is an alternative volatility proxy that
has gained much attention recently; see Andersen et al. (2001,
2003), and Barndorff-Nielsen and Shephard (2002, 2004). It is
now used as volatility estimate calculated as the sum of intraday
squared returns at short intervals.

Let pt be the daily log price of a financial asset at day t and
n be the sampling frequency within each period [t − 1, t], there
are n continuous returns between t − 1 and t,

rt,i = pt−1+i/n − pt−1+(i−1)/n,

for i = 1, . . . , n. Then the realized volatility

RVt =
n∑
i=1

r2
t,i , (1)

is an estimate of the integrated volatility
∫ t
t−1 σ

2(t)dt
(Barndorff-Nielsen and Shephard 2002).

In the ideal situation that there were no market microstruc-
ture noise and the asset were always and continuously traded, the
realized volatility would provide an asymptotically consistent
estimator of the integrated volatility. For the real-world case, dif-
ferent estimates of realized volatility are available, such as the
realized kernel estimator of Barndorff-Nielsen et al. (2008), the
preaveraging-based realized variance estimator of Jacod et al.
(2009), the subsampled realized variance estimator of Zhang,
Mykland, and Aı̈t-Sahalia (2005), and the subsampled median-
based realized variance estimator of Andersen, Dobrev, and
Schaumburg (2012). These different estimation methods pro-
vide us with multiple observable realized volatility measures
(or referred to as realized measures).

The Box–Cox transformation is a useful family of power
transformations proposed by Box and Cox (1964). Let

RV(λ)
t =

{(
RVλ

t − 1
)
/λ, if λ �= 0;

log RVt , if λ = 0.
(2)

It contains the log transformation (when λ = 0) and the raw
statistic (when λ = 1) as special cases. Frequently, this Box–
Cox transformation is used to transform the underlying variable
to a normally distributed variable. Of course, in practice not all
data could be power-transformed to normal.

Barndorff-Nielsen and Shephard (2002) argued that the cen-
tral limit theorem approximation for the log of the standard re-
alized variance estimator has a good finite sample performance
in practical settings, making the log transformation a natural
choice. However, Gonçalves and Meddahi (2011) showed on
the basis of a Monte Carlo simulation study that specific Box–
Cox transformation improves the accuracy of asymptotic ap-
proximations for realized estimators, and hence performs better
than other transformation such as the raw (when λ = 1) and the
log transformation (when λ = 0) in eliminating the bias and the
skewness in finite samples.

In this article, we wish to determine an appropriate λ so that
RV(λ)

t is more approximated to a normal and has less skewness
than the logarithm transformation.
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2.2 Stochastic Volatility Dynamics for Transformed
Realized Measures

Suppose we have K different realized volatility measures
for a certain financial asset. For notational convenience we let
xt = (RV1t , . . . ,RVKt )′, t = 1, . . . , T , where RVj t is the jth re-
alized measure at day t. Let x(λ)

t = (RV(λ1)
1t , . . . ,RV(λK )

Kt )′ be the
Box–Cox transformation of xt , where λj is the transformation
parameter for the jth realized measure (j = 1, . . . , K).

We model the transformed realized measures as a static factor
model with a common latent volatility process. The measure-
ment equation is then given by

RV
(λj )
j,t = τj +βjθt + uj,t , ut = (u1,t , . . . , uK,t )

′ ∼N (0, �u),

(3)

for j = 1, . . . , K , and t = 1, . . . , T , where τj and βj are un-
known parameters. In (3), θt can be considered as the unob-
served underlying volatility while RV

(λj )
j,t are all biased and

noisy observations of θt . If τj �= 0 and βj �= 1, j = 1, . . . , K ,
we implicitly take the transformed realized volatility as pos-
sibly biased estimates of daily volatility. In practice, it of-
ten restricts βj = 1 for j = 1, . . . , K for convenience; see
Takahashi, Omori, and Watanabe (2009), and Koopman and
Scharth (2013). The bias may come from several sources such
as nonlinear transformation of RVt because of Jensen’s in-
equality, the market microstructure noise and nontrading hours.
In addition, the measurement disturbances ut is assumed to
be an independence sequence of normally distributed random
vectors with zero mean and covariance matrix �u. We de-
compose the covariance matrix to a K × 1 vector of stan-
dard deviations, σu = (σu1, . . . , σuK )′, and a K ×K correla-
tion matrix, R = {ρu,ij }Ki,j=1 with ρu,ij = ρu,ji and ρu,ii = 1
for i, j = 1, . . . K , according to the decomposition: �u =
diag{σu1, . . . , σuK} · R · diag{σu1, . . . , σuK}, where diag() is a
function that inserts a vector into the diagonal of a matrix.

For the latent volatility θt in (3), we assume that it consists
of multiple dynamic volatility process. Let θt a sum of m× 1
vector containing the components h1t , . . . , hmt , the volatility
process is then defined as

θt = μ+
m∑
i=1

hit , hi,t+1 = φihi,t + ηit , ηit ∼ N
(
0, σ 2

ηi

)
,

(4)

with the initial value hi1 ∼ N (0, σ 2
ηi/(1 − φ2

i )) known, where ηt
represents a sequence of independent and identically normally
distributed random variables and is independent of the mea-
surement errors ut . The constant term μ denotes the volatility
mean, and the autoregressive coefficients {φ1, . . . , φm} denote
the volatility persistence for each component. To ensure sta-
tionarity and noninterchangeablility for hit , we impose the con-
straints |φi | < 1, i = 1, . . . , m, and φ1 > · · · > φm. This spec-
ification can capture both short and long run components for
volatility.

The model given by (3) and (4) can be easily rewritten in a
conventional state space form as follows:

x
(λ)
t = c + Zαt +Gεt , (5)

αt+1 = d + T αt +Hεt , (6)

for t = 1, . . . , T , where εt ∼ N (0, IK+m) with IK+m
being a (K +m) × (K +m) identity matrix, x

(λ)
t =

(RV(λ1)
1,t , . . . ,RV(λK )

K,t )′, αt = (h1t , . . . , hmt )′, GG′ = �u,
c = (τ1 + β1μ, . . . , τK + βKμ)′, d = 0m×1, HH ′ =
diag{σ 2

η1, . . . , σ
2
η,m},

Z =

⎛⎜⎜⎜⎝
β1 β1 · · · β1

β2 β2 β2
...

. . .
...

βK βK · · · βK

⎞⎟⎟⎟⎠, and

T =

⎛⎜⎜⎜⎝
φ1 0 · · · 0
0 φ2 0
...

. . .
...

0 0 · · · φm

⎞⎟⎟⎟⎠.
In this state space form, the latent volatility can be calculated
by θt = μ+ 1′αt , where 1 is a column vector of one. Since the
measurement disturbances ut and the transition disturbances ηt
are assumed to be mutually independent, we haveGH ′ = 0 and
HG′ = 0. In addition, the initial state vector α1 ∼ N (a1, P1) is
also known, with a1 is the vector of zero and the variance matrix
P1 = diag(σ 2

η1/(1 − φ2
1), . . . , σ 2

ηm/(1 − φ2
m)).

Unfortunately, the model given by (3) and (4) for the realized
measures does not enable us to identify all parameters, since
the bias parameters and the volatility mean, that is, τj , βj , and
μ, j = 1, . . . , N , are not identified. Hence following Takahashi,
Omori, and Watanabe (2009) and Koopman and Scharth (2013),
we will include daily return in our model to ensure identifiability
of all parameters in next section.

2.3 Simultaneous Modeling of Daily Returns and
Realized Volatilities

Let pt be the log closing price of an asset at day t and yt
be the daily continuously compounded return, defined as yt =
pt − pt−1. We assume

yt = σtεt , εt ∼ iidN (0, 1), (7)

where σt is the daily volatility, and εt is an independent and
identically distributed normal random variable with zero mean
and unit variance. To simplify the exposition, we assume a zero
mean for the returns process throughout this article. Our model
can be easily extended to include nonzero mean structures.

In Equation (7), we also assume that the true volatility of asset
price σ 2

t is the inverse Box–Cox transformation for the latent
volatility θt , that is,

σ 2
t =

{
(1 + δθt )1/δ, if δ �= 0;

exp(θt ), if δ = 0.
(8)

where δ is a new transformation parameter that is not re-
lated to the transformation parameters (λ1, . . . , λK ) for realized
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measures. This inverse transformation includes the standard ex-
ponential transformation function for θt when δ = 0. Again, the
dynamics of θt is assumed to be the same multiple component
volatility process as (4). Note that the relationship between the
volatility σ 2

t and the latent volatility θt could also be equivalently
represented as the following Box–Cox transformation function,

θt =
{(
σ 2δ
t − 1

)
/δ, if δ �= 0;

log σ 2
t , if δ = 0.

(9)

To consider the possible asymmetric effect between daily
returns and volatility components, we do not assume εt to
be independent of ηt in (4), and the correlation coefficients
are ρi , i = 1, . . . , m. A negative dependence between re-
turns and volatility components is often referred to as the
leverage effect (Yu 2005). If ρi < 0, a fall in the stock
price/return leads to an increase of volatility. Denote zt = (εt −
ρ ′diag{σ−1

1η , . . . , σ
−1
mη }ηt )/

√
1 − ρ ′ρ, where ρ = (ρ1, . . . , ρm)′

is a m× 1 vector. Then the daily return can be rewritten as

yt = σtρ
′diag

{
σ−1

1η , . . . , σ
−1
mη

}
ηt +

√
1 − ρ ′ρ · σtzt . (7′)

Here zt is an iid standard normal random variable, and the
disturbance terms zt and ηt are mutually independent.

To summarize, the Equations (3), (4), (7), and (9) provide
a complete formulation of the realized BCSV model for the
daily returns and realized measures, and the bias parameters in
Equation (3) can be now identified. The model suggested by
Yu, Yang, and Zhang (2006) is a reduced model of our system,
which only used (4), (7), and (9) based on only the daily returns
without the realized measures. By adding some realized mea-
sures, our model carries more information for identifying the
latent volatility or stochastic volatility. If all transformation pa-
rameters are equal to zero, that is, λ1 = · · · = λK = δ = 0, we
have the realized SV model with the log transformation spec-
ification proposed by Takahashi, Omori, and Watanabe (2009)
and Koopman and Scharth (2013). For easy comparison, we will
refer it to as the realized LNSV model.

3. ESTIMATION METHODS

3.1 The Likelihood of the Realized BCSV Model

Let ψ be a fixed and unknown parameter vector contain-
ing all model parameters. We partition the parameter vector
into four subvectors: λ includes the Box–Cox transformation
parameters used for transforming the realized measures, ψssf

includes all the parameters in (6), ψrm includes the parame-
ters in (5), and ψsv includes the parameters in (7). Specifically,
ψ = (λ′, ψ ′

sv, ψ
′
ssf , ψ

′
rm )′, where

λ = {λ1, . . . , λK}, ψsv = {ρ ′, δ}, ψssf = {φ′, σ ′
η}, and

ψrm = {μ, τ ′, β ′, σ ′
u, vecl(R)},

and vecl(R) contains all the lower-diagonal elements of the
correlation matrix as a vector, that is, ρu,ij for 1 ≤ j < i ≤ K .

Define the observation series of daily returns y1:T =
(y1, . . . , yT )′, the observation series of realized measures x1:T =
(x ′

1, . . . , x
′
T )′, and the series of unobservable state variables

α1:T = (α′
1, . . . , α

′
T )′. The likelihood function of the realized

BCSV model is then given by

L(y1:T , x1:T ;ψ) = p(x1:T ;ψ)p(y1:T |x1:T ;ψ), (10)

wherep(x1:T ;ψ) is the likelihood of the linear state space model
given by (5) and (6) associated with the realized measures and
p(y1:T |x1:T ;ψ) is the conditional density associated with the
daily returns. In the following, we obtain these two parts of
likelihood function (10) separately.

3.1.1 The Kalman Filter and Likelihood Function for Re-
alized Measures. For the state space given by (5) and (6),
standard Kalman filter can be used to provide a recursive algo-
rithm for computing the minimum mean squared error estimator
of αt conditional on x(λ)

1 , . . . , x
(λ)
t−1 or x(λ)

1:t−1, that is,

αt |t−1 = E
(
αt |xλ1:t−1

) = E
(
αt |x(λ)

1 , . . . , x
(λ)
t−1

)
and its mean squared error (MSE)

Pt |t−1 = E
[
(αt |t−1 − αt )(αt |t−1 − αt )

′|xλ1:t−1

]
.

More specifically, the Kalman filter is the set of recursions

vt = x
(λ)
t − d − Zαt |t−1, Ft = ZPt |t−1Z

′ +GG′,

Kt = (T Pt |t−1Z
′ +HG′)F−1

t , Lt = T −KtZ, (11)

αt+1|t = c + T αt |t−1 +Ktvt , Pt+1|t = T Pt |t−1T
′

+ HH ′ −KtFtK
′
t .

The initial conditions α1|0 = a1 and P1|0 = P1 are assumed to
be unconditional mean and variance matrix.

The filter innovations (one step ahead prediction errors) are
denoted by vt = x

(λ)
t − E(x(λ)

t |x(λ)
1:t−1) and their variance matrix

by

Ft = var(vt ) = var
{
x

(λ)
t − E

(
x

(λ)
t

∣∣x(λ)
1:t−1

)}
.

These two quantities form the necessary ingredients for the
likelihood. Under the normality assumption, the conditional
density of xt can be written as

p(xt |x1:t−1; λ,ψssf , ψrm ) = 1

κt
· 1

(2π )K/2|Ft |1/2

· exp

{
−1

2
v′
tF

−1
t vt

}
·
K∏
j=1

x
λj−1
j,t ,

(12)

where ψrm and ψssf are the parameter vectors including all
parameters in the state space representation given by (5) and
(6), x1:t−1 denotes the available information of x up to t − 1.
The term κt in (12) is a normalizing constant and depends on the
fitted values of xt andFt . Note that the distribution of xt in (12) is
a truncated normal distribution for any λj �= 0. See Freeman and
Modarres (2006) for details about the multivariate extension for
the Box–Cox transformation. However, in most situations κ ≈ 1
for applications, for example, for univariate case see Box and
Cox (1964) and Chen (1995), and for multivariate case see Riani
(2004, 2009), hence the term 1/κt in (13) can be ignored.
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By approximating κt with one, the likelihood function asso-
ciated with the realized measures consequently becomes

p(x1:T ; λ,ψssf , ψrm ) ≈ (2π )−TK/2 · exp

{
−1

2

T∑
t=1

ln |Ft |

−1

2

T∑
t=1

v′
tF

−1
t vt

}
·
T∏
t=1

K∏
j=1

x
λj−1
j,t . (13)

Therefore, based on the standard Kalman filter recursion, we
can directly get the first part of likelihood function p(x1:T ;ψ) =
p(x1:T ; λ,ψssf , ψrm ) in (10).

3.1.2 The Likelihood of Returns Based on Selected
Information. The second part of likelihood function
p(y1:T |x1:T ;ψ) is more complicated because the conditional
volatility variable σt (or equivalently, θt ) appears in both the
conditional return Equation (7) and the latent volatility Equa-
tion (4) of the model. In fact, it is a high dimensional integral of
the signal α, that is,

p(y1:T |x1:T ;ψ) =
∫ T∏

t=1

p(yt |xt , αt , αt+1;ψsv)

×p(αt |αt−1;ψ)dα1, . . . αT . (14)

Moreover, due to the presence of endogeneity between
daily return yt and the realized measures xjt for j =
1, . . . , K shown in Koopman and Scharth (2013), the dis-
tribution p(yt |xt , αt , αt+1;ψsv) is currently not available. Let
θt = μ+ 1′αt and ηt = αt+1 − T αt , we can further sim-
plify the conditional return density to another form, that is,
p(yt |xt , αt , αt+1;ψsv) = p(yt |xt , θt , ηt ;ψsv). Therefore, a com-
plete analysis of likelihood functionp(y1:T |x1:T ;ψ) is infeasible
unless we know the exact density of p(yt |xt , θt , ηt ;ψsv).

To evaluate the likelihood in (14), the approximate approach
suggested by Koopman and Scharth (2013) is adopted here.
First, by using selected information, the likelihood function can
be approximated as p(y1:T |x1:T ;ψ) ≈ ∏T

t=1 p(yt |x1:T ;ψ) be-
cause the high-frequency information set for calculating the re-
alized volatility at day t includes yt , while returns introduce new
information about the signal only via leverage effects and bias
correction. To remove the endogeneity problem, we further ap-
proximate the likelihood p(y1:T |x1:T ;ψ) ≈ ∏T

t=1 p(yt |x−t
1:T ;ψ)

by deleting the information that yt share with the other realized
measures at day t, where x−t

1:T = {x1, . . . , xt−1, xt+1, . . . , xT }
and

p
(
yt

∣∣x−t
1:T ;ψ

) =
∫
p(yt |θt , ηt ;ψsv)

×p(
θt , ηt

∣∣x−t
1:T ; λ,ψssf , ψrm

)
d(θt , ηt ). (15)

The Equation (15) implies that the conditional den-
sity of p(yt |x−t

1:T ;ψ) is effectively the expectation of
the density p(yt |θt , ηt ;ψsv) with respect to the density
p(θt , ηt |x−t

1:T ; λ,ψssf , ψrm ). Therefore, the evaluation of the in-
tegral (15) by two-dimensional numerical or Monte Carlo in-
tegration would be straightforward. We compute the mean and
variance of the Gaussian density p(θt , ηt |x−t

1:T ; λ,ψssf , ψrm ) by
the deletion smoothing algorithm of de Jong (1989) applied
to the models (3) and (4). For more details about the deletion

smoothing algorithm see the Appendix in Koopman and Scharth
(2013).

3.2 Two-Step Estimation Procedure

Based on the above likelihood analysis, this section presents
the two-step maximum likelihood estimation procedure for our
proposed model. In the first step, we implement the estimation
of the state space model given by (5) and (6) with the trans-
formed realized measures by running the Kalman filter (11) and
maximizing the likelihood function p(x1:T ; λ,ψssf , ψrm ) with
respect to λ, ψssf , and ψrm in (13). For identification, the opti-
mization is subject to the coefficients τj andβj for j = 1, . . . , K
inψrm , which we refer to asψbias, and we also restrict the param-
eters βj = 1 (j = 1, . . . , K) for the realized measures. We take
the particular value ψ∗

bias = {c∗1, . . . , c∗K}, where c∗j = τj + μ,
j = 1, . . . , K , and denote the resulting maximum likelihood
estimates as λ̂∗, ψ̂∗

ssf , ψ̂∗
rm , and ψ̂∗

bias. It should be also noted
that the first-step estimation is robust to the misspecification of
the return Equation (7).

In the second step, the main purpose of maximum likelihood
estimation is to implement the estimation of the parameters
ψsv in (7) and the bias parameters ψbias, where we denote μ =
ĉ∗j − τj . Given the parameters estimates λ̂∗, ψ̂∗

ssf , and ψ̂∗
rm from

the first step, we estimate the remaining part of the parameter
vector by maximizing the approximate density

p∗(y1:T |x1:T ;ψ) =
T∏
t=1

∫
p(yt |θt , ηt ;ψsv)p(θt , ηt |x−t ;

×ψbias, λ̂
∗, ψ̂∗

ssf , ψ̂
∗
rm )d(θt , ηt ). (16)

The optimization is with respect to ψsv and ψbias only in the
second step. This integral can be evaluated by two-dimensional
numerical or Monte Carlo integration via the deletion smoothing
algorithm of de Jong (1989).

Now, we summarize the two-step estimation procedure based
on the preceding discussion:

Step 1. Take the parameters c∗j = τj + μ, j = 1, . . . , K ,
then estimate parameters of the model given by (5)
and (6) via the maximum likelihood estimation proce-
dure based on the Kalman filter with the transformed
realized measures in (2), and obtain parameter esti-
mates λ̂∗, ψ̂∗

ssf , and ψ̂∗
rm .

Step 2. Using a maximum likelihood method via the dele-
tion smoothing algorithm and the numerical or Monte
Carlo integration with the estimated parameters from
the first step, estimate (16) along with (7) and (9),
and obtain the estimates ψ̂sv and ψ̂bias.

3.3 Volatility Estimation With Inverse Transformation

After parameters estimation, we are interested in the volatility
estimates σ νt , for t = 1, . . . , T . For the controlling parameter ν,
we have the conditional variance σ 2

t when ν = 2, the conditional
standard deviation σt when ν = 1, and the standardized return
yt/σt when ν = −1, and so on. Given the parameter estimates
ψ̂ from the two-step maximum likelihood estimation procedure,
there might be several methods to compute the volatilities. In
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our study, we compute the volatility σ νt based on the Gaussian
density p(αt |·) after running the Kalman filter and smoother al-
gorithm. However, due to the inverse Box–Cox transformation,
the estimation of the volatility is not straightforward.

Now we take the smoothed estimate of the volatility σ νt
as example. Given the smoothed estimate αt |T and its mean
squared error Pt |T from the Gaussian density p(αt |FT ; ψ̂), we
immediately have the smoothed estimate of the Gaussian den-
sity p(θt |FT ; ψ̂) with the mean θt |T = E(θt |FT ) = μ+ 1′αt |T
and the variance Vt |T = var(θt |FT ) = 1′Pt |T 1, where FT =
{x1, . . . , xT } denotes the whole sample information from the
realized measures. With the mean θt |T and its variance Vt |T
known, our purpose is next to derive the moments of σ νt , espe-
cially the mean σ νt |T = E(σ νt |FT ). Carroll and Ruppert (1981)
and Taylor (1985) argued that one way to address the issue is
to apply the inverse Box–Cox transformation and make infer-
ences in the original scale of the data. For the log transformation
case that δ = 0, the exact expressions of the n-order moments
of σ νt is simply given by E(σnνt |FT ) = exp(sθt |T + s2Vt |T /2),
where the number s = nν/2; see Johnson, Kotz, and Balakrish-
nan (1994). However, for the Box–Cox transformation case that
δ �= 0, the n-order moment of σ νt is highly nonlinear, and it is
often represented by the integral of a binomial sum with respect
to the density of p(θt |FT ; ψ̂), that is,

E
(
σnνt |FT

) =
∫

(1 + δθt )
s/δp(θt |FT ; ψ̂)dθt

=
∫ ∞∑

k=0

(
s/δ

k

)
(δθt )

kp(θt |FT ; ψ̂)dθt ,

where the number also satisfies s = nν/2. It is not hard to prove
that the exact expressions for mean and variance are almost a
sum of infinite terms. In fact, the mean and variance do have
a closed form solution only in particular case, namely δ = 0,
and δ = 1/p, p = 1, 2, 3, . . .. For further details, the reader is
referred to Freeman and Modarres (2006) and Proietti and Riani
(2009). To deal with the estimation problem, some approximate
and computational solutions are available to obtain the estimate
of the mean of σ 2

t , such as the approximate methods proposed
by Taylor (1986a) and Guerrero (1993), and the Monte Carlo
method suggested by Proietti and Riani (2009).

To obtain the estimate of the mean of σ νt , we use the Monte
Carlo method suggested by Proietti and Riani (2009). For the
Monte Carlo evaluation, we draw repeated samples from the
conditional distribution of p(θt |FT ; ψ̂) with its mean θt |T and
the variance Vt |T , and then compute the Monte Carlo integration

σ̂ νt |T = 1

G

G∑
g=1

(
1 + δθ

(g)
t

)ν/2δ
,

where θ (g)
t is draw from p(θt |FT ; ψ̂) and it needs to satisfy that

δθ
(g)
t ≥ −1, for g = 1, . . . ,G. We take the value of G = 1000

in our empirical application in Section 5.
Similarly, we can employ the Monte Carlo method to com-

pute the prediction estimates of the volatility σνt or the realized
measures xt by the inverse transformation in the same way.

4. SIMULATION EXPERIMENTS

In this section, we investigate the performance of the two-step
estimation method based on the deletion smoothing scheme.
We also present Monte Carlo evidence regarding the impact of
model misspecification when true process is the realized BCSV
model or the realized LNSV model, and show some limited
evidence of how the log transformation specification performs
in practice if the true process is the realized BCSV model.

For this purpose, we generate 200 sets of data by a simplified
version of the system given by the realized BCSV model with
λ1 = λ2 = δ �= 0 (Case 1), and the realized LNSV model with
λ1 = λ2 = δ = 0 (Case 2). We also assume that there is only one
component of volatility, that is,m = 1. Each sample is of length
T = 3000. The data-generation processes can be formulated
as follows: for the realized BCSV model (Case 1), yt = σtεt ,
σt = (1 + δθt )1/2δ , εt ∼ N (0, 1), (x

λj
j t − 1)/λj = τj + θt + ujt ,

ujt ∼ N (0, σ 2
uj ), θt = μ+ ht , ht+1 = φht + ηt , ηt ∼ N (0, σ 2

η ),
t = 1, . . . , 3000; for the realized LNSV model (Case 2), yt =
σtεt , σt = exp(θt ), εt ∼ N (0, 1), ln(xjt ) = τj + θt + ujt , ujt ∼
N (0, σ 2

uj ), θt = μ+ ht , ht+1 = φht + ηt , ηt ∼ N (0, σ 2
η ), t =

1, . . . , 3000. In both cases, the disturbance series ut have the
correlation coefficient ρu,21, that is, corr(u1t , u2t ) = ρu,21, and
the disturbances εt and ηt have the correlation coefficient ρ1 and
are independent fromut . For each sample, we estimate the model
twice: (i) with the Box–Cox transformation specification, and
(ii) with the log transformation specification. When estimating
the model with both two specifications, the two-step estimation
procedure introduced in Section 3.2 is employed.

The specific parameter values we assign are summarized be-
low. In Case 1, the true process is the realized BCSV model,
and the true parameters are assigned as

ρ1 = −0.30, λ1 = λ2 = δ = −0.05, τ1 = −0.10,

τ2 = −0.30, β1 = β2 = 1,

σu1 = σu2 =
√

0.05, ρu,21 = 0.80, μ = 0.40, φ = 0.98,

ση =
√

0.05.

In Case 2, the true process is the realized LNSV model, and the
parameter values are

ρ1 = −0.30, λ1 = λ2 = δ = 0, τ1 = −0.10,

τ2 = −0.30, β1 = β2 = 1,

σu1 = σu2 =
√

0.05, ρu,21 = 0.80, μ = 0.40,

φ = 0.98, ση =
√

0.05.

Table 1 reports the results obtained from the two-step es-
timation procedure. For the case of the realized BCSV pro-
cess (λ1 = λ2 = δ = −0.05) or the realized LNSV process
(λ1 = λ2 = δ = 0), we restrict the parameters β1 = β2 = 1 and
estimate the samples by both the Box–Cox transformation and
log transformation specifications with one volatility component
(m = 1). Several observations can be seen from the upper part
of Table 1. First, the two-step MLE estimator exhibits very good
performance. All means are very close to the true parameter val-
ues assigned for the DGP except for Case 1 when estimating with
the log transformation specification. Moreover, these means and
root square mean errors are nearly identical. The above result
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Table 1. The results of the simulation experiments

Case 1: Realized BCSV Case 2: Realized LNSV

True Box-Cox Logarithm True Box-Cox Logarithm

ρ1 −0.30 −0.2951 (0.026) −0.2943 (0.025) −0.30 −0.2953 (0.025) −0.2953 (0.026)
δ −0.05 −0.0494 (0.026) — 0.00 0.0004 (0.029) —
λ1 −0.05 −0.0505 (0.007) — 0.00 −0.0005 (0.007) —
λ2 −0.05 −0.0506 (0.008) — 0.00 −0.0006 (0.008) —
τ1 −0.10 −0.1060 (0.031) −0.1067 (0.026) −0.10 −0.1060 (0.031) −0.1056 (0.026)
τ2 −0.30 −0.3059 (0.031) −0.3092 (0.027) −0.10 −0.3059 (0.031) −0.3054 (0.026)
σu1 0.2236 0.2234 (0.006) 0.2290 (0.006) 0.2236 0.2234 (0.006) 0.2234 (0.006)
σu2 0.2236 0.2238 (0.006) 0.2252 (0.006) 0.2236 0.2238 (0.006) 0.2238 (0.006)
ρu,21 0.80 0.7995 (0.010) 0.7985 (0.010) 0.80 0.7995 (0.010) 0.7994 (0.010)
μ 0.40 0.3972 (0.204) 0.4346 (0.204) 0.40 0.3973 (0.204) 0.3971 (0.200)
φ 0.98 0.9790 (0.004) 0.9790 (0.004) 0.98 0.9790 (0.004) 0.9790 (0.004)
ση 0.2236 0.2233 (0.007) 0.2265 (0.008) 0.2236 0.2233 (0.007) 0.2233 (0.007)

aSK(v1t ) 0 −0.0043 0.0572 0 −0.0043 −0.0047
aSK(v2t ) 0 −0.0071 0.0436 0 −0.0071 −0.0076
aK(v1t ) 3 3.0957 3.1268 3 3.0958 3.0959
aK(v2t ) 3 3.0839 3.1135 3 3.0840 3.0861

NOTE: For each cell, the statistics given are based on 200 simulated samples, each consisting of a time series of length 3000. The quantities aSK(·) and aK(·) denote the average skewness
and kurtosis of the innovations, respectively. The mean and root mean squared error (in parentheses) for each estimator are shown.

is consistent with the Monte Carlo result from the only LNSV
model given by Koopman and Scharth (2013). Second, we find
that the parameter estimates may get worse if the realized BCSV
model is misspecified and estimated by the log transformation
specification. In particular, the biases in the estimates of τ2, σu1,
σu2,μ, or ση are significantly unnegligible. This is not surprising
because they are based on the wrong model specification. Third,
for Case 2, we get nearly the same sample performance when
modeling the sample with the Box–Cox transformation and log
transformation specifications. The Monte Carlo experiment re-
sult shows that the means of the parameter estimates are almost
the same and the mean of the estimated λ is very close to zero.
The above results also imply that the Box–Cox transformation
specification would be preferable regardless of the true process
being the realized BCSV model or the realized LNSV model.

We have also examined whether the use of log transformation
leads to excessive skewness and kurtosis and non-Gaussian in
the residuals. By 1000 replications of Monte Carlo simulation,
we run different specifications (Box–Cox or logarithm) on the
generated data from the realized BCSV model or the realized
LNSV model. The corresponding results of average skewness
and kurtosis are reported in the bottom of Table 1. It is shown
that the average skewness and kurtosis for the logarithm spec-
ification of the realized BCSV model obviously increase but
not very large compared to other correct specifications. This
implies that the misuse of log transformation for the data gen-
erated from the realized BCSV model may lead to the certain
excessive skewness and kurtosis and so the non-Gaussianity in
the residuals.

In addition, to assess the quality of a normality test of λ = 0,
we simulate the test statistics for the Z-test (standardized statis-
tic) with the null hypothesis H0 : λ = 0 and concern with two
types of error. We repeat another 1000 replications for Case
1 and Case 2, and get all estimates of parameters λ1 and
λ2 and their corresponding standard errors. For Case 2 with
λ1 = λ2 = 0, the simulated Type I error rates at the significance

level (0.05) are 0.045 and 0.046 for λ1 and λ2, respectively.
This result indicates that the sampling distribution of the Box–
Cox transformation parameter is approximately standard nor-
mal. Similarly for Case 1, our simulation result shows that the
powers of Z-test for λ1 and λ2 are almost one.

5. EMPIRICAL APPLICATION

5.1 Data Series

The empirical analysis is based on the daily data taken from
the “Oxford-Man Institute’s realized library version 0.2” (avail-
able at http://realized.oxford-man.ox.ac.uk). It contains daily re-
turns and realized volatilities constructed with intraday prices.
The sample period is from January 3, 2000, to May 15, 2012.
We select five stock indices for our empirical analysis, including
Standard & Poor 500 Index (SP500), FTSE 100 Index (FTSE),
Nikkei 225 Index (Nikkei), Deutscher Aktien-Index (DAX),
and Dow Jones Industrial Average Index (DJIA). Specifically,
we use their daily returns and two realized volatility measures:
realized variance estimators (RV5m, computed by the sum of
squared 5-minute log returns) and realized kernel (RK, com-
puted tick by tick data, after cleaning, using the methodology
of Barndorff-Nielsen et al. 2008) estimators for each stock in-
dex. In addition, the missing values in the data are deleted for
convenience.

Table 2 reports summary statistics for the daily returns and
two realized measures for each stock index. We observe that
the skewness and kurtosis of both realized measures show evi-
dent nonnormal distribution, while the distributions of log trans-
formed realized measures are close to normal. This result is
consistent with most empirical studies mentioned in the intro-
duction. It is also noted that the autocorrelation functions (ACFs)
are still very large even when the lag is 22 days or roughly one
month, indicating the existence of strong volatility persistence.
In addition, we can clearly see the discrepancies between the
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Table 2. Descriptive statistics of returns and realized kernels for stock indices

SP500 FTSE Nikkei DAX DJIA
RET RET RET RET RET

T 3082 3099 2987 3130 3084
Mean −0.001 −0.045 −0.049 −0.047 0.015
Std. Dev. 1.314 1.041 1.218 1.434 1.257
Skewness −0.132 −0.125 −0.405 −0.061 0.026
Kurtosis 9.597 6.616 13.642 7.445 10.363

SP500 FTSE Nikkei DAX DJIA

RV5m RK RV5m RK RV5m RK RV5m RK RV5m RK

Mean 1.454 1.388 1.059 1.049 1.208 1.250 2.147 2.117 1.406 1.310
Std. Dev. 2.910 2.935 1.905 1.746 1.793 2.030 3.487 3.607 3.016 2.895
Skewness (raw) 10.014 13.413 9.373 6.961 8.535 8.805 9.689 7.483 11.734 13.676
Kurtosis (raw) 185.13 335.65 153.85 77.260 109.32 109.75 72.888 88.433 242.74 331.47
ACF(1) 0.779 0.806 0.849 0.858 0.785 0.771 0.845 0.851 0.747 0.796
ACF(5) 0.703 0.719 0.781 0.789 0.666 0.648 0.765 0.774 0.675 0.712
ACF(22) 0.556 0.565 0.663 0.664 0.507 0.498 0.635 0.639 0.531 0.557
Skewness (log) 0.489 0.504 0.319 0.268 0.258 0.327 0.283 0.338 0.546 0.612
Kurtosis (log) 3.338 3.435 2.968 2.925 3.627 3.782 2.955 3.045 3.523 3.712

NOTE: The top panel reports the descriptive statistics of returns (RET), and the bottom panel reports the descriptive statistics of realized measures including the 5-min realized variance
(RV5m) and the realized kernel (RK). The skewness and kurtosis of both the raw and log transformed realized measures are computed. Std. Dev. is the daily standard deviation of daily
returns or realized mesures. ACF(j) denotes the autocorrelation functions at j lag for the realized measures.

sample variance (or the square of standard deviation) of stock
returns and the volatility mean of realized measures. This char-
acteristic of stock market data is captured by the bias term τ in
the realized stochastic volatility model.

5.2 Estimation Results

We model the returns and two realized measures by the re-
alized BCSV model introduced in Section 2. On the basis of
the Bayesian information criterion, we find that SP500, Nikkei,

DAX, and DJIA require m = 3 AR(1) processes to model the
latent volatility θt in (4), while FTSE requires m = 2. In addi-
tion, we model the realized measures by (3) with the restriction
that β1 = β2 = 1, following Takahashi, Omori, and Watanabe
(2009), and Koopman and Scharth (2013). All estimation results
are obtained by the two-step estimation method of Section 3.2.

Table 3 reports the parameter estimates for each stock index
with the realized BCSV specification. As shown in the table,
all estimates of the transformation parameters λ1 and λ2 are
relatively small but significantly differ from zero at 5% level,

Table 3. Parameter estimation results of the realized BCSV model

Parameter SP500 FTSE Nikkei DAX DJIA

ρ1 −0.2766∗∗ (0.106) −0.4163∗∗ (0.099) −0.0724 (0.143) −0.2777∗∗ (0.097) −0.2283∗∗ (0.086)
ρ2 −0.2353∗∗ (0.096) −0.1880∗∗ (0.053) −0.2777∗∗ (0.090) −0.2839∗∗ (0.082) −0.2696∗∗ (0.078)
ρ3 −0.3795∗∗ (0.058) −0.1741∗∗ (0.047) −0.0738∗ (0.036) −0.2958∗∗ (0.058)
δ −0.0017 (0.043) −0.0209 (0.039) −0.1175∗∗ (0.045) 0.0559 (0.038) −0.0111 (0.045)
λ1 −0.0535∗∗ (0.009) −0.0450∗∗ (0.008) −0.0148 (0.011) 0.0244∗∗ (0.008) −0.0389∗∗ (0.009)
λ2 −0.0520∗∗ (0.008) −0.0210∗∗ (0.008) −0.0316∗∗ (0.011) 0.0139 (0.008) −0.0488∗∗ (0.009)
τ1 −0.1448∗∗ (0.037) −0.0870∗∗ (0.037) −0.0105 (0.035) 0.0361 (0.037) −0.1122∗∗ (0.035)
τ2 −0.1740∗∗ (0.037) −0.0781∗ (0.037) −0.0149 (0.035) 0.0167 (0.037) −0.1489∗∗ (0.035)
σu1 0.4298∗∗ (0.015) 0.3786∗∗ (0.012) 0.3225∗∗ (0.022) 0.2913∗∗ (0.048) 0.4677∗∗ (0.014)
σu2 0.3839∗∗ (0.016) 0.3612∗∗ (0.012) 0.3525∗∗ (0.020) 0.2656∗∗ (0.052) 0.3831∗∗ (0.016)
ρu,21 0.9508∗∗ (0.004) 0.9270∗∗ (0.005) 0.8892∗∗ (0.014) 0.8676∗∗ (0.047) 0.9325∗∗ (0.004)
μ −0.1436 (0.254) −0.4431 (0.304) −0.2205 (0.223) 0.2211 (0.295) −0.2186 (0.232)
φ1 0.9941∗∗ (0.004) 0.9948∗∗ (0.003) 0.9959∗∗ (0.003) 0.9949∗∗ (0.003) 0.9932∗∗ (0.004)
φ2 0.9419∗∗ (0.053) 0.8179∗∗ (0.061) 0.9515∗∗ (0.020) 0.9378∗∗ (0.053) 0.9283∗∗ (0.050)
φ3 0.6472∗∗ (0.150) 0.5769∗∗ (0.119) 0.3932∗∗ (0.149) 0.6127∗∗ (0.192)
ση1 0.0856∗∗ (0.036) 0.0931∗∗ (0.019) 0.0523∗∗ (0.017) 0.0872∗∗ (0.032) 0.0895∗∗ (0.026)
ση2 0.1463∗∗ (0.042) 0.2247∗∗ (0.018) 0.1326∗∗ (0.024) 0.1405∗∗ (0.026) 0.1496∗∗ (0.042)
ση3 0.2249∗∗ (0.037) 0.2524∗∗ (0.030) 0.3047∗∗ (0.045) 0.1968∗∗ (0.041)

NOTE: The reported results are estimated by the realized BCSV model. The vector of realized measures include the realized variance (5-min) and the realized kernel estimators. Parameter
estimates is carried out by the two-step method and is based on the deletion smoothing algorithm as presented in Section 3.2. The standard deviation errors of parameter estimates are
reported in parentheses. “∗∗” and “∗” denote that the parameter estimate is significant according to the standard Z-test at 1% and 5% level of significance, respectively.
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Figure 1. Estimated latent volatility signal and individual components for S&P 500. Note: The top of the four subfigures is the estimated
latent volatility signal θt and the following are three volatility components hit , i = 1, 2, 3.

except λ1 for Nikkei and λ2 for DAX. It indicates that the Box–
Cox transformation specification for modeling these realized
measures is indeed needed and is more appropriate than the
logarithm transformation specification. However, for the trans-
formation parameter δ, only the estimate for Nikkei is barely
significant, showing that it is probably not necessary to have a
Box–Cox transformation between the conditional volatility σt
and the volatility signal θt .

For the bias parameters τ1 and τ2 in (3), the estimates for
SP500, FTSE, and DJIA are significantly negative. The nega-
tive biased estimate reflects the bias between the transformed
realized volatility and the latent stochastic volatility signal, and
also explains their downwards discrepancies between the mean
of realized measures and the variance of returns. However, the
bias estimates for Nikkei and DAX are not significant, implying
that there are no evident differences between the transformed
realized measures and the volatility signal for these two stock
indices.

The parameter estimates of autoregressive coefficients φi and
standard deviations ση,i suggest that three AR(1) components
for θt work well for SP500, Nikkei, DAX, and DJIA and two
components for FTSE. We find that the first AR components
in these models are all near unit root processes with estimated
AR coefficients larger than 0.99 and relatively small estimated
standard deviations. The second AR components are persistent
processes with estimated autoregressive coefficients between
0.82 and 0.95. Except for FTSE, the third AR components are
of relatively short memory with AR coefficients estimated as low
as 0.39 and reaching a maximum of 0.65. Using SP500 as exam-

ple, Figure 1 shows the volatility signal and its three volatility
components, where the former is the sum of the volatility com-
ponents and the volatility meanμ. This figure shows that the first
component determines the long-range trend of the volatility sig-
nals, and the third components capture the short-run processes,
respectively.

From the estimated correlation coefficients ρi , it is seen that
for all stock indices the volatility components have negative,
highly significant correlations with the stock returns, indicat-
ing that leverage effects significantly impact the volatility com-
ponents. The estimated leverage effects obtained here contrast
with previous studies which have found leverage effects for both
long-run and short-run components; see, for example, Koopman
and Scharth (2013), and for transitory components only, see
Engle and Lee (1999).

Figure 2 presents the smoothed volatility estimates of σt , and
the estimated standardized returns calculated by ε̂t = yt σ̂

−1
t ,

where σ̂−1
t is the estimated inverse of the standard deviation

using the computation method in Section 3.3. The estimated
nonparametric density estimates and the QQ plots for the stan-
dardized returns are also reported in the figure. The result shows
that the standardized returns of SP500, FTSE, Nikkei, and DAX
are approximately normal, which validates the normal hypothe-
sis for the disturbance term εt in (7). The skewness and kurtosis
of ε̂t reported in Table 4 provide further evidence in support
of this result. However, for DJIA, the standardized returns still
have obviously heavy tail which can be seen in the fourth and
last panels of DJIA in Figure 2. It might be useful to use the
student-t distribution to model this nonnormal disturbance. The
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Figure 2. Volatility estimates and standardized returns. Note: From the left to the right, the panels plot for each stock index the daily returns,
the estimated volatilities (σt ), the estimated standardized returns, the nonparametric density estimates, and the QQ plots, respectively. In the
fourth panel, the solid line denotes the density estimates and the dot line denotes the standard normal or N (0, 1). In the last panel, the solid line
denotes the QQ line and the dot lines are pointwise asymptotic 95% standard error bands, as derived in Engler and Nielsen (2009).

relevant estimation problem of the realized stochastic volatility
model will be straightforward on the basis of Koopman and
Scharth (2013).

5.3 Model Comparison

Table 4 presents an in-sample comparison between the Box–
Cox transformation specification and the log transformation
specification. From the table, the log-likelihood values of the
realized BCSV model are markedly larger for all stock in-
dices than those of the realized LNSV model. The result shows
that we can reject the null of the log transformation specifi-
cation if constructing the conventional likelihood ratio test on
λ1 = λ2 = δ = 0, with the computed Monte-Carlo p-values be-
ing less than 0.05 for all stock indices (0.001, 0.001, 0.003,
0.014, and 0.002 for SP500, FTSE, Nikkei, DAX, and DJIA, re-
spectively, based on 1000 times of experiments). Taking SP500,

for example, in Figure 3 we show the log-likelihood function as
a function of the transformation parameter maximized over all
other parameters. It can be seen that it is concave and the max-
imum is significantly higher than that setting λ to zero. There-
fore, consistent with the estimation result mentioned before, the
Box–Cox transformation specification is more preferable for
these stock indices than the log transformation specification.
Moreover, the results of the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) in the table also show
further evidence. Although the BIC values for the Nikkei and
DAX using the realized BCSV model are not lower than those
using the realized LNSV model, we can still get the smaller
BIC values of the realized BCSV model than the pure realized
LNSV model if restricting some of insignificant parameters in
term of the parameter estimates in Table 3. For instance, when
we restrict λ2 = 0 and δ = 0, the BIC value of the BCSV model
is 12,661, smaller than that of the realized LNSV model.
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Table 4. In-sample comparison of alternative models

Realized BCSV Realized LNSV

SP500 FTSE Nikkei DAX DJIA SP500 FTSE Nikkei DAX DJIA

log.lik −2927.5 −693.9 −3613.1 −6264.3 −3290.8 −2949.2 −731.9 −3625.0 −6273.0 −3310.2
AIC 5891.0 1417.8 7262.3 12565 6617.7 5928.4 1487.8 7279.9 12576 6650.4
BIC 5999.6 1507.8 7370.3 12673 6726.3 6018.9 1559.8 7370.0 12667 6740.9
Skewness (v1t ) 0.2357 0.3742 0.5250 0.1530 0.2424 0.3509 0.4947 0.5570 0.2196 0.3343
Kurtosis (v1t ) 3.9211 5.7552 4.5415 4.9045 4.1203 4.0146 6.0650 4.6361 4.9703 4.2263
Skewness (v2t ) 0.1943 0.3299 0.4363 0.2549 0.2805 0.3159 0.3893 0.5123 0.2879 0.4039
Kurtosis (v2t ) 4.1123 6.1815 4.2070 5.1552 4.7267 4.2925 6.2444 4.3840 5.1988 5.0255
Skewness (εt ) −0.0269 −0.1129 −0.0903 −0.0409 −0.0832 −0.0281 −0.1144 −0.0917 −0.0420 −0.0883
Kurtosis (εt ) 3.1606 2.9989 3.2321 2.9492 3.4749 3.1579 3.0050 3.2601 2.9442 3.4840
RMSE (y2

t ) 4.2873 2.2822 4.5975 4.5737 4.0964 4.2251 2.2821 4.7802 4.5576 4.0416
MAE (y2

t ) 1.6483 1.0725 1.4730 2.0211 1.5135 1.6528 1.0693 1.4684 2.0442 1.5168
RMSE (RV5m) 1.9012 1.4253 1.2257 2.3133 2.0296 1.9064 1.4249 1.2242 2.3118 2.0246
MAE (RV5m) 0.6698 0.4589 0.4741 0.8282 0.6597 0.6611 0.4550 0.4735 0.8324 0.6570
RMSE (RK) 2.0300 1.2127 1.3978 2.4506 1.9659 2.0346 1.2131 1.4090 2.4532 1.9660
MAE (RK) 0.6124 0.4270 0.5241 0.8208 0.5517 0.6068 0.4259 0.5234 0.8218 0.5485

NOTE: log.lik denotes the estimated log-likelihood value of the realized stochastic volatility model, AIC and BIC denote the Akaike information criterion and Bayesian information
criterion, and RMSE and MAE denote the root mean squared error and the mean absolute error of volatility estimates. We take squared returns, 5-min realized variance (RV5m), and
realized kernel (RK) as possible volatility proxies.

We next consider the improvement we have made of our
advantages of the Box–Cox transformation specification over
the log transformation specification. This analysis is through
a selection of diagnostic statistics such as the skewness and
the kurtosis, based on the one-step ahead prediction residuals
vjt , j = 1, 2. By comparing the results of the realized BCSV
model with those of the realized LNSV model, we find that
the skewness and the kurtosis of vt improve a little bit. This is
consistent with the previous results from the Monte Carlo sim-
ulation in Section 4. However, the realized BCSV model still
suffers the problem of excessive skewness and high kurtosis. We
think the possible reason of this phenomenon may be caused by

jumps and/or heteroscedasticity in the realized volatilities (see
also Corsi et al. 2008). A direct generalization to the nonlin-
ear and/or non-Gaussian problem may have some difficulty in
estimation and so it will exceed our discussion. We will leave
this direction for future study. In addition, no autocorrelations
for the residuals v1t and v2t can be found from the autocorre-
lation functions (not reported here). It indicates that multiple
autoregressive processes of volatility components for modeling
the volatility persistence are adequate.

Table 4 compares in-sample forecast performance of the re-
alized BCSV and LNSV models by comparing their root mean
squared error (RMSE) and mean absolute error (MAE) for
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Figure 3. Estimated log-likelihood against transformation parameters: S&P 500. Note: The log-likelihoods are obtained from the two-step
MLE estimation of the realized BCSV model. Each fixed transformation parameter ranges from −0.2 to 0.1. The dotted lines λ = λ̃1 (left) and
λ = λ̃2 (right) are the corresponding points that arrive at maximum log-likelihood values for two parameters λ1 and λ2, respectively.
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Table 5. Out-of-sample forecasting results

Relative RMSE Relative MAE

SP500 FTSE Nikkei DAX DJIA SP500 FTSE Nikkei DAX DJIA

(a) y2
t

h = 1 1.0015 0.9946 1.0418 0.9921 0.9987 1.0024 0.9958 1.0004 0.9994 1.0007
h = 5 1.0019 0.9956 1.0420 0.9902 0.9993 1.0027 0.9968 1.0042 0.9977 1.0012
h = 22 1.0019 0.9968 1.0463 0.9870 0.9999 1.0025 0.9975 1.0262 0.9949 1.0011

(b) RV5m
h = 1 1.0029 1.0037 0.9979 1.0134 1.0181 1.0007 1.0054 1.0030 1.0048 1.0068
h = 5 1.0020 1.0048 0.9959 1.0044 1.0127 0.9998 0.9989 1.0133 1.0009 1.0045
h = 22 1.0025 1.0075 0.9827 1.0006 1.0094 1.0029 1.0046 1.0294 0.9987 1.0064

(c) RK
h = 1 1.0067 1.0136 0.9921 0.9920 1.0187 1.0083 1.0016 1.0048 0.9940 1.0070
h = 5 1.0058 1.0074 0.9947 0.9954 1.0112 1.0046 0.9996 1.0167 0.9968 1.0053
h = 22 1.0049 1.0098 0.9786 0.9964 1.0081 1.0060 1.0095 1.0286 0.9968 1.0079

NOTE: Relative RMSE and relative MAE denote the RMSE and MAE ratios of realized BCSV model to realized LNSV model, respectively. We take squared returns, 5-min realized
variance (RV5m), and realized kernel (RK) as possible volatility proxies. h denotes the step length or the forecast horizon.

predicting conditional volatilities (σ 2
t ). For this purpose, the

prediction values is calculated via the Kalman filter prediction
and the method of volatility estimation in Section 3.3. We take
both squared returns and realized volatility measures as possible
volatility proxies. First, considering the squared returns as the
volatility proxy, the MAE result shows that for SP500, DAX,
and DJIA, the realized BCSV model performs better than the
realized LNSV model, while the RMSE result shows that only
for Nikkei the realized BCSV model performs better than the
realized LNSV model. Second considering the realized variance
(RV5m) as the volatility proxy, the MAE and RMSE results only
support the realized BCSV model for DAX and SP500 being
more preferable. Third, considering the realized kernel (RK) as
the volatility proxy, the RMSE result prefers the realized BCSV
model for all five stocks, while the MAE result only supports
the realized BCSV model for DAX.

We also consider out-of-sample forecasting performance us-
ing the two metrics: relative RMSE and relative MAE, which
are RMSE and MAE ratios of realized BCSV model to realized
LNSV model, respectively. To achieve this goal, we use the
sample starting from January 1, 2010, to May 15, 2012 to test
forecasting performance. The results of out-of-sample forecast
comparison are reported in Table 5 with the corresponding fore-
cast horizon or step length (h) being 1, 5, and 22 days. Similarly,
we can find that for some stock indices with certain volatility
proxy, the realized BCSV model performs better than the real-
ized LNSV model. For example, the RMSE and MAE results
associated with returns as the volatility proxy for the FTSE and
DAX show that the proposed realized BCSV model is preferable
compared to the realized LNSV model; the RMSE results with
the realized variance (RV5m) and the realized kernel (RK) as
the volatility proxies show that the Nikkei prefers the realized
BCSV model.

In short, the above results of in-sample forecasting and out-
of-sample forecasting reveal that the realized BCSV model per-
forms competitively in predicting the conditional volatility for
some stock indices and volatility proxies compared to the real-
ized LNSV model.

6. CONCLUDING REMARKS

In this article, we have introduced a class of realized stochastic
volatility models based on the Box–Cox transformation which
takes a more flexible structure than the logarithm transforma-
tion for the realized volatility measures. This class of realized
BCSV model can be seen as an extension of the realized LNSV
model proposed by Takahashi, Omori, and Watanabe (2009)
and Koopman and Scharth (2013), and also an extension of the
return-based BCSV model introduced by Yu, Yang, and Zhang
(2006) and Zhang and King (2008). To estimate the realized
BCSV model, we have further presented a two-step maximum
likelihood estimation procedure based on the Kalman filter and
the deletion smoothing algorithm.

The simulation results show good performance of the two-
step maximum likelihood estimation for the realized BCSV
model and reveal that model misspecification has significant
impacts on parameter estimation and excessive skewness and
kurtosis if the realized BCSV model is misspecified and esti-
mated by the log transformation specification. The Monte Carlo
evidence also suggest that the Box–Cox transformation specifi-
cation would be preferable regardless of the true process. The
empirical results with two realized volatility measures and daily
returns for five stock indices show the feasibility of the realized
BCSV model and demonstrate that the Box–Cox specification
is more appropriate than the logarithm specification in modeling
stochastic volatilities in terms of the in-sample results such as
the values of log-likelihood, AIC and BIC. In addition, the re-
sults of sample forecasting performance show that the realized
BCSV model performs competitively compared to the realized
LNSV model in predicting the conditional volatility.
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