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a b s t r a c t

A compositional time series is a multivariate time series in which the observation vector
at each time point is a set of proportions that sum to 1. Traditionally, such time series
are modeled by taking a log-ratio transformation of the observations and then modeling
them with a Gaussian vector autoregressive moving average (ARMA) model. In this paper,
a new class of models is proposed by assuming that the proportions follow a time-varying
Dirichlet distribution, and that the corresponding time-varying parameters, after a proper
transformation, assume an ARMA-type of dynamic structure. The newmodel is referred to
as the Dirichlet autoregressive moving average (DARMA) model. Under this model, after
a proper transformation, the original data follow a vector ARMA model with a martingale
difference sequence as its noise series. Two specific transformations are studied under the
DARMA framework. Estimation procedures are developed and their numerical properties
are investigated. Simulation studies and real examples are presented to demonstrate the
properties of the proposed models, and comparisons are made with the existing modeling
approaches.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Compositional time series aremultivariate time series which at time t are non-negative proportions that sum to [1]. Such
time series are often encountered in biology, business, environmental sciences, demography, ecology, economics, geology,
and political science. For example, the dynamics ofmarket shares of a certain product among all competitors is an important
factor in developing themarketing and development strategies of the companies. The change in the composition of the gross
domestic product (GDP) for different economic sectors reveals important signals for economic policy makers.

Since the pioneering work of Aitchison [2,3], researchers have shown an increasing interest in modeling compositional
time series; see, e.g., [11,20,31]. The main difficulty is the unit-sum constraint, which severely complicates statistical
analysis. The standard multivariate techniques, such as the vector autoregressive moving average (VARMA), are no longer
applicable.

Data transformation is one of the main tools used in modeling compositional time series. Specifically, the compositional
data are first transformed to follow the normal distribution, and then a time series model is assumed for the transformed
series. The major advantage of this approach is that under the normal assumption, most existing standard modeling,
estimation, and forecasting tools are readily available. Various forms of transformation have been proposed in the literature.
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Brunsdon [10], Smith and Brunsdon [35], and Brunsdon and Smith [11] proposed the alr-VARMA model using the additive
log-ratio (alr) transformation. Quintana and West [31] and Brandt, Monroe and Williams [8] proposed the clr-VAR model
using the centered log-ratio (clr) transformation. Bergman [6] proposed the ilr-VARmodel using the isometric log-ratio (ilr)
transformation. The well-known Box–Cox transformation has also been used; see, e.g., [1,3,7]. Integrated VARMA models
have been studied as well [4]. This type of time series modeling, which is based on transformation and a distributional
assumption on innovations, is often called the innovations-based approach. In addition, some studies employ the linear
Gaussian state space model for modeling the transformed compositions, see, e.g., [7,33,34]. The key assumption of these
models is, of course, the ability to find a normal or Gaussian transformation.

In terms of applications, the alr-VARMA model has been most frequently and successfully used for modeling and
forecasting series, such as unemployment rates [11], trends in obesity [28], expenditure shares [29], and performance data
in cricket [29].

An alternative approach is based on the distributional assumption of the original data, which is known as the data-based
approach. This is a more direct approach that is often easier to interpret and understand. The most natural distribution
for compositional data is the Dirichlet distribution. Although the Dirichlet distribution has a strong implied dependence
structure and has been deemed an inappropriate candidate for modeling independent compositional data [3], it was found
to be useful when used as a conditional distribution. With or without covariates, the varying coefficients can accommodate
flexible covariance/correlation structures; see, e.g., [9,12,13,24]. For a compositional time series, Grunwald et al. [20]
developed a state-space model to model the compositional data directly under the constraints, where the observations
that are conditional on the unobserved state are assumed to have a Dirichlet distribution and the state follows the Dirichlet
conjugate distribution. A generalization of the Dirichlet distribution was also proposed to allow for dependence between
the components [14].

In this paper, we propose a new class of time series models for compositional data under a conditional Dirichlet
distribution, with time-varying coefficients. It is a data-based model and can be seen as a special case of the multivariate
version of the Martingalized-GARMA (M-GARMA) model used by Zheng et al. [38]. Specifically, with a conditional Dirichlet
assumption on the compositional data at each time point, the time-varying distributional parameters are modeled by a
vector-ARMA-type process through a link function. Therefore, it is referred to as the Dirichlet autoregressivemoving average
(DARMA) model. In fact, under this model, the original data, after a transformation that is determined by the link function,
follow a vector ARMA model in which the noise process is a martingale difference sequence (MDS). Obviously, it is closely
related to the transformation to normality when using the vector-ARMA model approach, but has a more solid foundation
and fewer restrictions.

To exploit the DARMA model, we further consider two specific link functions corresponding to additive log-ratio and
centered log-ratio data transformations. We will refer to them as alr-DARMA and clr-DARMA. The relationship between
the link function and the transformation is important as it is a key component in evaluating the likelihood function for
estimation. We will show that, under the DARMA framework, these two transformations are equivalent models with
different parametrizations.

The rest of this paper is organized as follows. Section 2 starts with a brief review of the Dirichlet distribution and its
properties, and then introduces the DARMA models and its two special cases, the alr-DARMA and clr-DARMA models. The
link functions associated with the two specific DARMAmodels and the equivalence of these two models are also discussed.
Section 3 discusses three estimation approaches for the DARMAmodels. In Section 4, we perform two simulation studies to
investigate the finite-sample properties of the proposed estimators, and compare the performances of the proposed DARMA
models with the existing methods for modeling compositional time series. Finally, in Section 5 we analyze the share data of
UK gross final expenditure using the DARMA models.

2. The model

2.1. Dirichlet distribution

Let y = (y1, . . . , yK )⊤ be a K × 1 positive random vector that satisfies that y1 + · · · + yK = 1 and yi ∈ (0, 1) for all
i ∈ {1, . . . , K}. The random vector y follows a Dirichlet distribution with positive parameters α = (α1, . . . , αK )

⊤, denoted
y ∼ Dir(α), if the probability density function of y is

f (y | α) =
1

B(α)

K
i=1

yαi−1
i ,

where B(α) =
K

i=1 Γ (αi)/Γ (
K

i=1 αi) is the multinomial beta function serving as the normalizing constant and Γ is
Euler’s gamma function. The Dirichlet distribution, which is a multivariate generalization of the Beta distribution, is subject
to degeneracy since y1 + · · · + yK = 1.

Moreover, τ = α1 + · · · + αK can be interpreted as the inverse scale parameter or the concentration parameter. The
expectation of each component is E(yi) = αi/τ , the variance is var(yi) = {αi(τ − αi)}/{τ

2(τ + 1)}, and the covariance for
i ≠ j is cov(yi, yj) = (−αiαj)/{τ

2(τ + 1)}.
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2.2. Dirichlet ARMA model

Suppose that yt = (y1t , . . . , yKt)⊤ is a compositional time series consisting of a K -dimensional vector of non-negative
components such that y1t + · · · + yKt = 1 for each t . Let Ft = {yt , yt−1, . . .} be the σ -field generated by all the information
up to t . We assume that the conditional distribution of yt follows a Dirichlet distribution:

yt | Ft−1 ∼ Dir(αt), (1)

where αt = (α1t , . . . , αKt)
⊤ has strictly positive components. Moreover, the scale parameter τt is defined as τt =

α1t + · · · + αKt . The next step is to link the current parameter αt with the past information in Ft−1.
Based on the M-GARMA framework of Zheng et al. [38], with a properly selected K -dimensional link function h and its

companion function g(αt) = E{h(yt) | Ft−1}, we assume that the reparametrized vector of the time-varying parameters,
ηt = g(αt), follows a multivariate ARMA-type process, viz.

ηt = A0 +

p
j=1

Ajh(yt−j)+

q
j=1

Bjηt−j, (2)

where p and q are non-negative integers, A0 is a constant vector, A1, . . . , Ap and B1, . . . , Bq are the coefficient matrices
associated with lag variables. In fact, the quantity ηt is a one-step-ahead prediction of h(yt) given the past values
{h(yt−1), . . . , h(yt−p), ηt−1, . . . , ηt−q}.

By adding εt = h(yt)− ηt = h(yt)− g(αt) to both sides of (2), we have

h(yt) = A0 +

m
j=1

(Aj + Bj)h(yt−j)+ εt −

q
j=1

Bjεt−j, (3)

where m = max(p, q). Note that E(εt | Ft−1) = 0. Hence, the process (εt) is a MDS. This setting is very similar to the
standard modeling approach using a VARMAmodel on a transformed time series. The major difference is that the standard
approach assumes the noise to be Gaussian under the h transformation, while in the DARMA model, the noise process is a
MDS that is determined by the conditional Dirichlet distribution assumption in (1) and the transformation h. More detailed
discussions on the differences are presented in Section 2.4.

Using the terminology ofM-GARMA in Zheng et al. [38], g(αt) and h(yt) serve as the link function and the y-link function,
respectively. Given the Dirichlet distribution assumption and the specific y-link function h, the link function g is completely
determined. In general, g ≠ h unless h is the identity function. When modeling rates or proportional time series data, the
identity link function is not ideal because it is difficult to provide feasible parameter conditions to ensure that all values of
the conditional expectation are bounded between 0 and 1.We also note that an extension of the GARMAmodel by Benjamin
et al. [5] in the compositional time series case would force g(αt) = h(αt/τt). The resulting noise sequence is no longer a
MDS [32], which complicates the analysis and leads to difficulties in the investigation of the probabilistic properties of the
series and asymptotic behavior of the estimators.

Our model is flexible enough to include deterministic covariates, such as trends and seasonal dummies, and exogenous
variables with easy interpretations.

2.3. Two specific models

The choice of y-link function is the crux of building a DARMAmodel. Two log-ratio transformations, the additive log-ratio
(alr) transformation and the centered log-ratio (clr) transformation, are traditionally used for compositional data [3], and
have been used to transform compositional time series into a Gaussian process [8,11,32].

In this section, we investigate the use of these two transformations as the y-link function in a DARMA model.

2.3.1. The alr-DARMA model
If we denote k = K − 1, the additive log-ratio (alr) transformation,

alr(yt) =


ln

y1t
yKt
, . . . , ln

ykt
yKt

⊤

,

is a one-to-one transformation from the natural sample space, namely the simplex SK
= {(y1t , . . . , yKt)⊤ : y1t >

0, . . . , yKt > 0; y1t +· · ·+yKt = 1} to Rk. In this transformation, the K th component yKt serves as the reference component.
It should be noted that the analysis based on the transformation is permutation invariant; in other words, it is unaffected
by the choice of common denominator.

The following proposition, whose proof is given in Appendix A.1, provides themean and variance of alr(y)when y follows
a Dirichlet distribution.
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Proposition 1. Let y = (y1, . . . , yK )⊤ ∼ Dir(α1, . . . , αK ). The expectation of the log transformed variable, ln y =

(ln y1, . . . , ln yK )⊤, and its covariance matrix are

E(ln y) = (ψ(α1)− ψ(τ), . . . , ψ(αK )− ψ(τ))⊤

and

cov(ln y) = diag{ψ1(α1), . . . , ψ1(αK )} − ψ1(τ )1K1⊤

K ,

where τ = α1 + · · · + αK , ψ is the digamma function, ψ1 is the trigamma function, 1K is a K-dimensional vector of 1’s, and
diag{·} is a diagonal matrix.

The expectation and covariance matrix of the additive log-ratio transformed variable,

alr(y) =


ln

y1
yK
, . . . , ln

yk
yK

⊤

are

µ = E{alr(y)} = (ψ(α1)− ψ(αK ), . . . , ψ(αk)− ψ(αK ))
⊤

and

cov{alr(y)} = diag{ψ1(α1), . . . , ψ1(αk)} + ψ1(αK )1k1⊤

k ,

where k = K − 1.

Let the alr transformation be the y-link function in theDARMAmodel. That is, h(yt) = alr(yt) in (2).Wehave the following
alr-DARMA model

yt | Ft−1 ∼ Dir(αt) and
K

i=1

αt = τ

ηt = A0 +

p
j=1

Ajalr(yt−j)+

q
j=1

Bjηt−j, (4)

where

ηt = g(αt) = E{h(yt) | Ft−1} = (ψ(α1t)− ψ(αKt), . . . , ψ(αkt)− ψ(αKt))
⊤. (5)

The link function g in (5) is due to Proposition 1. Note that, given the k-dimensional ηt = (η1t , . . . , ηkt)
⊤, the

K -dimensional vector of the time-varying parameters, αt = (α1t , . . . , αKt)
⊤, is unidentifiable since k = K − 1. In our

model, we impose the constraint α1 + · · · + αK = τ , where τ is the concentration parameter of the Dirichlet distribution.
We assume that it is a time invariant unknown parameter to be estimated.

The likelihood function of the model given by (4) and (5) requires the inverse of the link function g(αt). With the
constraint α1 + · · · + αK = τ , we write g(αt) in (5) as

g(αt) = ηt =


ψ(α1t)− ψ


τ −

k
i=1

αit


, . . . , ψ(αkt)− ψ


τ −

k
i=1

αit

⊤

. (6)

This can be seen as a multivariate extension of the link function of the logit-Beta-M-GARMA model introduced in [38]. The
following proposition shows that its inverse function is uniquely defined.

Proposition 2. Given τ > 0 and a set of constant η = (η1, . . . , ηk)
⊤, there is a unique set of positive numbers α =

(α1, . . . , αK )
⊤ that satisfy the system of equations: g(α) = η and α1 + · · · + αK = τ , where the function g is specified in (6).

The proof for the existence and uniqueness of solving the above system is shown in Appendix A.2. According to
Proposition 2, we can obtain the unique solution of αt = (α1t , . . . , αKt)

⊤ at each time t . We denote the inversion as
αt = g−1(ηt)with the K th time-varying parameter αKt = τ − (α1t + · · · + αkt).

In addition, for theMDS noise process εt = h(yt)−g(αt) in (3), the conditional covariancematrix givenFt−1 is the same
as for h(yt). Following Proposition 1, we have

Vt = cov{alr(yt) | Ft−1} = diag{ψ1(α1t), . . . , ψ1(αkt)} + ψ1(αKt)1k1⊤

k , (7)

where 1k is a k-dimensional vector of 1’s, diag{·} is a function that inserts a vector into the diagonal of a matrix, and ψ1 is
the trigamma function.
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2.3.2. The clr-DARMA model
The centered log-ratio (clr) transformation is another popular transformation for compositional data. It is defined as:

clr(yt) =


ln

y1t
m(yt)

, . . . , ln
yKt

m(yt)

⊤

,

where m(yt) denotes the geometric mean of yt , i.e.,m(yt) = (y1t · · · yKt)1/K .
Let J = IK − 1K1⊤

K /K , where IK is a K -dimensional identity matrix and 1K is a K -dimensional vector of 1’s. It can easily be
seen that clr(yt) = J ln yt and 1⊤

K clr(yt) = 0. Compared to the alr transformation, the clr transformation uses the geometric
mean as the reference component, but introduces a singularity.

Setting the y-link function h(yt) = clr(yt) in the DARMA model, the clr-DARMA model takes the form

yt | Ft−1 ∼ Dir(αt) and
K

i=1

αt = τ

ηt = A0 +

p
j=1

Ajclr(yt−j)+

q
j=1

Bjηt−j, (8)

where ηt = g(αt) = E{clr(yt) | Ft−1}. By Proposition 1, we have

g(αt) = E{clr(yt) | Ft−1} = JE{ln(yt) | Ft−1}

= J (ψ(α1t)− ψ(τ), . . . , ψ(αKt)− ψ(τ))⊤

= (ψ(α1t)− ξt , . . . , ψ(αKt)− ξt)
⊤,

where ξt = {ψ(α1t)+ · · · + ψ(αKt)}/K .
Because 1⊤

K J = 0, therefore 1⊤

K ηt = 0 for all t . We impose the following constraints on the parameter matrices As and
Bs in (8): 1⊤

K A0 = 0, 1⊤

K Ai = 0⊤

K , 1
⊤

K Bj = 0⊤

K , where 0K is a vector of 0’s. In addition, 1⊤

K clr(yt) = 0 for all t . Hence, we can
re-parameterize model (8) with a lower-dimension equivalent representation, viz.

η∗

t = A∗

0 +

p
j=1

A∗

j clr
∗(yt−j)+

q
j=1

B∗

j η
∗

t−j (9)

where η∗
t and clr∗(yt−j) are the first k elements of ηt and clr(yt−j) respectively, and the coefficient matrices A∗

i and B∗

i are all
k × k matrices. In fact, we have ηt = (η∗

t
⊤,−1⊤

k η∗
t )

⊤ and clr(yt) = (clr∗(yt)⊤,−1⊤

k clr
∗(yt))⊤.

The conditional variance matrix of clr(yt) given Ft−1 is

Vt = J(diag{ψ1(α1t), . . . , ψ1(αKt)} − ψ1(τ )1K1⊤

K )J
= Jdiag{ψ1(α1t), . . . , ψ1(αKt)}J.

Note that this matrix is degenerated as 1⊤

K Vt = 0⊤

K and its upper-left k × k submatrix is the conditional variance matrix of
clr∗(yt) given Ft−1.

Again, as in the alr-DARMA case, we will need to find the solutions for αt under the system of equations gt(αt) = ηt and
α1 + · · · + αK = τ . The systems of equations can be rewritten as:

ψ(α1t)− ψ(αKt) = η1t − ηKt
ψ(α2t)− ψ(αKt) = η2t − ηKt

...
ψ(αkt)− ψ(αKt) = ηkt − ηKt

α1t + · · · + αKt = τ ,

where k = K − 1. This is equivalent to the system of equations under the alr-DARMA case, which has a unique solution as
indicated in Proposition 2.

2.3.3. Equivalence of two log-ratio models
We next show the equivalence of the alr-DARMA and the reduced form of clr-DARMA models under (9). The following

proposition, whose proof is trivial, gives the relationship between the clr transformation and alr transformation.

Proposition 3. Suppose yt is a K × 1 vector of compositions. Let clr∗(yt) be the first k = K − 1 components of the clr
transformation of yt , and alr(yt) be the alr transformation of yt . Then,

clr∗(yt) = Pkalr(yt) and alr(yt) = P−1
k clr∗(yt), (10)
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where Pk is a k × k dimensional matrix

Pk =
1
K


K − 1 −1 · · · −1
−1 K − 1 · · · −1
...

...
. . .

...
−1 −1 · · · K − 1

 and P−1
k =


2 1 · · · 1
1 2 · · · 1
...

...
. . .

...
1 1 · · · 2

 .
Substituting (10) into (9) results in the following representation of the clr-DARMA process:

Pkηt = E{clr∗(yt) | Ft−1} = A∗

0 +

p
j=1

A∗

j Pkalr(yt−j)+

q
j=1

B∗

j Pkηt−j, (11)

where ηt = E{alr(yt) | Ft−1}. Multiplying both sides of (11) by P−1
k yields

ηt = A0 +

p
j=1

Ajalr(yt−j)+

q
j=1

Bjηt−j, (12)

where A0 = P−1
k A∗

0 , Aj = P−1
k A∗

j Pk for all j ∈ {1, . . . , p} and Bj = P−1
k B∗

j Pk for all j ∈ {1, . . . , q}. Model (12) is the same as the
alr-DARMA model given by (4). Hence, the alr-DARMA model and the clr-DARMA model are equivalent, and the coefficient
matrices are equivalent under the linear transformations. However, numerical stability in estimation may depend on the
choice between the two models.

The alr and clr transformations are just two of the commonly used transformations. Many other y-link functions can
be considered. For example, the cumulative logit transformations or the adjacent-category logit transformation (when
components are ordered) can be used. With a chosen y-link h function and the induced link function g , the DARMA model
ensures a vector ARMA structure with a MDS as its noise sequence.

2.4. Difference to the VARMA model after the log-ratio transformation

The standard approach tomodeling compositional time series is to first apply a suitable transformation, and then use the
Gaussian vector ARMA model. Specifically, using h as a transformation function, the transformed VARMA (tVARVA) model
assumes that

h(yt) = A0 +

m
j=1

(Aj + Bj)h(yt−j)+ εt −

q
j=1

Bjεt−j, (13)

wherem = max(p, q), while the noise term εt is often assumed to be independent, identically distributed, andmultivariate
normal, εt ∼ N (0,Σ). The alr and clr transformations are commonly used, which will be denoted as alr-VARMA
and clr-VARMA. Following Proposition 3, the alr-VARMA and clr-VARMA models are also equivalent under a linear
reparametrization.

There are several major differences between the DARMAmodel and the tVARMAmodel. First, the DARMAmodel directly
assumes that the conditional distribution of the observed data yt follows a Dirichlet distribution. This is a data-based
approach, which is a term used by Davis et al. [15] and Davis and Wu [16]. The tVARMA model is an innovation-based
approach, which depends on a distributional (normal) assumption on the noise distribution of the ARMA model. The data-
based approach is more natural and lends itself to easy and direct interpretation; the assumption is also more testable. The
link functions reflect how the parameters in the conditional distribution relate to past information. Such a model structure
is easy to verify through the model selection procedure. The innovation-based approach lacks interpretation and depends
on the accuracy of the distribution assumption. While this assumption can be checked with residual analysis, it is often less
quantifiable.

Second, the DARMA model directly models the structure of the time-varying parameters. One can estimate αt as a
by-product of the model estimation; hence, its evolution can be graphically viewed and used to check whether any
exogenous variables, including time trend and seasonality, should be included. It is also easier to impose individualmodeling
assumptions on each of the components. For the tVARMA model, such terms can be included, but are difficult to interpret.

Third, the tVARMA model introduces the covariance matrix Σ of the noise sequence. When a DARMA model is written
in ARMA form (3), the noise sequence is a MDS with an induced covariance structure from the Dirichlet distribution
assumption and the y-link function. The covariance structure is also time-varying. Hence, the tVARMA model has more
flexibility inmodeling the correlation between the components, but introducesmore parameters in themodel. It only allows
homogeneous variance through time.

Fourth, the concentration parameter τ in the DARMAmodel can be time varying. For example, onemay consider a GARCH
type of structure in the form of

τt = bτt−1 + a
K

i=1

y2t−1 or τt = bτt−1 + a
K

i=1

αi,t−1yi,t−1.
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To introduce such heteroscedasticity in the tVARMA model, a much more complicated structure is needed for the time-
varying error covariance matrix.

Fifth, if one uses theGaussian pseudo-likelihood to estimate theDARMAmodel under the representation (3), the resulting
estimator is the same as the corresponding tVARMA model using the y-link function as the transformation; see Section 3
for details. Under mild conditions, such an estimator is consistent. Hence, the DARMA model and the tVARMA model often
yield similar estimated AR and MA parameter matrices. However, our simulation results, which are discussed in Section 4,
show that the maximum likelihood estimator under the DARMAmodel often has a smaller standard error than GMLE if the
DARMA is the true data generating model.

3. Model estimation

In this section, we consider three approaches for parameter estimation of the proposed DARMA models. The first is the
maximum likelihood estimation (MLE) based on the exact likelihood function; the second is the approximate MLE (AMLE)
based on the approximate likelihood through an approximation of the link function; and the third is the Gaussian MLE
(GMLE) of the AR andMA coefficient matrices using the Gaussian pseudo-likelihood estimation based on the representation
of (3). The GMLE is the same as that under the tVARMA model.

The AMLE is a simple estimator for the DARMA model. It can also be viewed as the MLE for the DARMA model with an
approximate link function forwhich the inverse of the approximate link function is analytically simple. GMLE is a commonly
used estimator for complex models, especially non-Gaussian time series. It can be obtained quickly with existing software.
In general, it also has good asymptotic properties. MLE is a ‘‘true’’ estimator without any approximation and, thus, has the
best performance. However, MLE requires nonlinear optimization and may not be numerically stable. A good initial value
will help significantly. AMLE and GMLE are good initial values.

3.1. MLE procedure

Let θ be the parameter vector containing all model parameters. For the alr-DARMA model and clr-DARMA model, it
contains the AR and MA matrices and the concentration parameter τ .

Suppose the available data set is {yT , . . . , y1, y0 . . . , y1−m}, where m = max(p, q). The log-likelihood function
conditional on the initial values {y0 . . . , y1−m} is

LT (θ) =

T
t=1

ℓt(θ), (14)

where

ℓt(θ) = ln{f (yt | Ft−1)} = lnΓ


K

i=1

αit


− ln


K

i=1

Γ (αit)


+

K
i=1

(αit − 1) ln yit ,

in which αt = g−1(ηt) can be obtained recursively under (3) given θ and a set of initial values η0, . . . , η1−q if q > 0.
As shown, g−1(ηt) is uniquely defined and can be obtained numerically for the equivalent alr-DARMA and clr-DARMA
models. If another y-link function is used, careful study is needed to ensure that g−1(ηt) is clearly defined. If g−1(ηt) is
not uniquely defined, the one that maximized ℓt(θ) may be used. Finally, the MLE is obtained by maximizing (14) using
nonlinear optimization procedures. When the MA order q is not zero, the initial value of η0, . . . , η1−q can be treated as
unknown parameters to be estimated, or it can be set to zero for simplicity.

The theory of Hall and Heyde [21] can be applied to study the asymptotic distribution of the MLE. For a one-dimensional
M-GARMA model, Zheng et al. [38] provided sufficient conditions that ensure the asymptotic normality of the likelihood
estimators. Since the DARMA model is a specific extension of the M-GARMA model, it is possible to carry out similar
theoretical investigations. However, an investigation into concrete DARMA models is much more difficult due to the
complexity of solving the vector αt from a system of nonlinear equations. The solution αt = g−1(ηt) does not have an
analytic expression, although it can be obtained numerically. The problem is under investigation but is beyond the scope of
the current paper. We can use the estimated Fisher information matrix to obtain the standard error of our estimates.

3.2. AMLE procedure

The evaluation of the exact likelihood function requires numerically solving a system of nonlinear equations to obtain
g−1(ηt). This is computationally intensive because the nonlinear optimization of the likelihood is not trivial and requires
many such evaluations. Hence, a good initial value can significantly reduce the computational burden. For this purpose, we
use an approximate link function g̃ so that its inverse g̃−1 can be readily obtained. In this case, the likelihood function is an
approximation of the true likelihood, and the resulting estimator is referred to as the approximate MLE or AMLE.

Following Zheng et al. [38], we approximate the link function using its first-order Taylor approximation. Specifically,
under the approximation E{h(yt) | Ft−1} ≈ h{E(yt | Ft−1)}, we use g̃(αt) = h(µt) = h(αt/τ), where µt = E(yt | Ft−1). By
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replacing the link function g with this approximation, themodel can be viewed as amultivariate extension of the generalized
ARMA (GARMA) frameworkproposedbyBenjamin et al. [5]. Under our framework, thismodel is treated as an approximation.

For the alr-DARMA model, the approximation becomes

g(αt) = alr(µt) =


lnα1t − ln


τ −

k
i=1

αit


, . . . , lnαkt − ln


τ −

k
i=1

αit

⊤

,

where τ = α1t + · · · + αKt . Its inverse function is

αit = g̃−1(ηt) =
τeηit

1 + eη1t + · · · + eηkt

for each i ∈ {1, . . . , k}, andαKt = τ(1 + eη1t + · · · + eηkt )−1. This approximation makes computation much easier.
For the clr-DARMA model, the approximate solution for g isg(αt) = clr(µt) = J lnµt = J(lnα1t − ln τ , . . . , lnαKt − ln τ)⊤

= (lnα1t − ζt , . . . , lnαKt − ζt)
⊤,

where τ = α1t +· · ·+αKt and ζt = K−1K
i=1 lnαit . For this approximation, we still have 1⊤

Kg(αt) = 0. The inverse function
g̃−1(ηt) is then

αit =
τeηit

eη1t + · · · + eηkt + eηKt

for each i ∈ {1, . . . , K}. Note that the AMLE of the clr-DARMA and alr-DARMA models are equivalent under linear
reparametrization.

3.3. GMLE procedure

Representation (3) of the DARMAmodel is in a form of the tVARMAmodel, although the error process is aMDS. Following
Yao and Brockwell [37] and Zheng et al. [38], we can use a Gaussian pseudo-likelihood approach to estimate the ARMA
coefficients in themodel, replacing the complicated noiseMDS in (3)with aGaussianwhite sequencewith constant variance.
This is equivalent to obtaining the standardMLE on the tVARMAmodel given by (13) directly. The estimator will be referred
to as GMLE. Since this becomes a standard vector ARMA model estimation, many methods can be used [27,36].

In practice, we can further estimate the fixed parameter τ by replacing the AR and MA coefficient matrices in (14) with
their corresponding GMLEs to optimize for τ . Since this is a one-dimensional optimization, the procedure is relatively simple
because we can use the residuals from the tVARMA model εG

t to obtain ηG
t = h(yt)− εG

t . Then αt can be recursively solved
using a fixed τ and given ηG

t , and the corresponding likelihood function can be evaluated.
Significant studies have been done on the asymptotic behavior of the GMLE for time series; see, e.g., [19,22,23,27,37].

These studies have proved the consistency under weak assumptions on the noise process, as well as obtained asymptotic
normality under a conditionally homoscedastic martingale difference assumption on the linear innovations. In our model,
although the noise process is a MDS, it is heteroscedastic. The approach used in Zheng et al. [38] may apply in our setting. A
detailed investigation is ongoing.

4. Simulation studies

This section investigates the finite-sample performances of the proposed three estimators, MLE, AMLE, and GMLE, for
the DARMA model. The performances of the proposed DARMA models are also compared with the existing methods used
to fit a compositional data set generated from an independent model.

All estimates are obtained by applying a constraint optimization technique that uses the MaxSQPF algorithm,
implementing a sequential quadratic programming technique; see Nocedal and Wright [30]. We also use the solver for
systems of nonlinear equations (SolveNLE) in OxMetrics software [17] to recursively get the solution of g−1(η).

4.1. Finite-sample performances of the estimators under the DARMA model

Consider a trivariate alr-DAR(p) model with lag order p = 1. We simulate a time series of length T (T =

100, 200, or 500):

yt | αt ∼ Dir(αt), g(αt) =


a10
a20


+


a11 a12
a21 a22


alr(yt−1), and τ =

3
i=1

αit ,
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Fig. 1. Simulated series of compositions from the alr-DAR(1) process.

where g(αt) = E{alr(yt) | Ft−1} is defined by (6). The specific true parameter values are assigned as follows:

a10 = −0.07, a20 = 0.01, a11 = 0.95, a12 = −0.05, a21 = 0.01, and a22 = 0.95.

Three different values of τ are considered: τ = 50, 100, and 1000. Fig. 1 shows a simulated series of T = 100 with three τ
values. As expected, the series with a larger τ is relatively more stable and has a smaller unconditional variance.

We estimate the parameters using MLE, AMLE, and GMLE. Each setting is repeated 500 times. The means and standard
errors of the estimates are presented in Table 1.

Several observations can be made from Table 1. First, GMLE performs worse than MLE when the scale parameter τ is
small (large variance). The parameter estimates of GMLE are more biased than those of MLE. Moreover, the root mean
squared errors (in parentheses) of the GMLE are evidently larger than those of MLE. Second, GMLE performs very well
and the corresponding estimates are very close to those of MLE when the τ is large (small variance). Moreover, the GMLE
becomes closer to MLE as the length of the time series increases. Third, AMLE performs poorly, especially when τ is small;
the estimates are always biased due to the linear approximation. Finally, all estimates, including MLE, AMLE, and GMLE, of
the parameter τ tend to be close. Of course, MLE requires nonlinear optimization, which takes a longer computational time
and may occasionally become stuck in a local mode. Using GMLE as the initial value of MLE has shown to be very effective
in saving computational time and improving accuracy.

4.2. DARMA model performance when tVARMA is the true model

We provide a numerical comparison of the performance of the proposed DARMA models with the existing traditional
models when the true data generating model is a trivariate alr-VAR(1) model.

We simulate a 2-dimensional time series (xt) from the following bivariate VAR(1) process:

xt =


a10
a20


+


a11 a12
a21 a22


xt−1 + εt , εt ∼ N


0,

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2


,

with σ1 = 0.05, σ2 = 0.05, ρ = 0.30, and

a10 = −0.07, a20 = 0.01, a11 = 0.95, a12 = −0.05, a21 = 0.01, a22 = 0.95.

Based on xt , a compositional time series data (yt), is obtained by setting, for each t ∈ {1, . . . , 500},

y1t =
ex1t

1 + ex1t + ex2t
, y2t =

ex2t

1 + ex1t + ex2t
, y3t =

1
1 + ex1t + ex2t

.
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Table 1
Simulation results of the trivariate alr-DAR(1) model.

Parameter True T = 100 T = 200 T = 500
MLE AMLE GMLE MLE AMLE GMLE MLE AMLE GMLE

a10 −0.07 −0.1119 −0.1560 −0.2452 −0.0923 −0.1276 −0.2209 −0.0741 −0.1001 −0.1991
(0.1136) (0.1855) (0.3029) (0.0555) (0.1056) (0.2399) (0.0263) (0.0646) (0.1572)

a20 0.01 0.0108 0.0130 0.0069 0.0102 0.0124 0.0089 0.0123 0.0147 0.0109
(0.0775) (0.0794) (0.1056) (0.0415) (0.0395) (0.0544) (0.0236) (0.0225) (0.0343)

a11 0.95 0.9047 0.8044 0.8237 0.9270 0.8245 0.8437 0.9423 0.8391 0.8449
(0.0701) (0.0989) (0.0918) (0.0433) (0.0785) (0.0520) (0.0257) (0.0651) (0.0782)

a12 −0.05 −0.0610 −0.0235 −0.0469 −0.0570 −0.0271 −0.0508 −0.0526 −0.0275 −0.0393
(0.0801) (0.1040) (0.1797) (0.0425) (0.0536) (0.1253) (0.0210) (0.0316) (0.0894)

a21 0.01 0.0122 0.0143 0.0153 0.0116 0.0129 0.0132 0.0118 0.0128 0.0125
(0.0439) (0.0428) (0.0519) (0.0220) (0.0213) (0.0253) (0.0120) (0.0114) (0.0175)

a22 0.95 0.9050 0.8679 0.8809 0.9248 0.8879 0.9041 0.9414 0.8989 0.9158
(0.0606) (0.0578) (0.0589) (0.0358) (0.0332) (0.0376) (0.0199) (0.0190) (0.0437)

τ 50 52.141 51.610 49.731 51.419 51.061 48.456 50.560 50.338 47.234
(5.4658) (6.0290) (7.4510) (3.8420) (4.5749) (7.0554) (2.5311) (3.5077) (6.0223)

a10 −0.07 −0.1150 −0.1396 −0.1696 −0.0962 −0.1189 −0.1617 −0.0779 −0.0951 −0.1404
(0.0905) (0.1143) (0.1424) (0.0249) (0.0800) (0.1886) (0.0257) (0.0371) (0.1153)

a20 0.01 0.0176 0.0178 0.0165 0.0137 0.0144 0.0141 0.0121 0.0129 0.0125
(0.0615) (0.0612) (0.0689) (0.0371) (0.0362) (0.0388) (0.0181) (0.0176) (0.0207)

a11 0.95 0.9073 0.8615 0.8717 0.9271 0.8772 0.8899 0.9426 0.8947 0.8980
(0.0655) (0.0716) (0.0663) (0.0403) (0.0568) (0.0520) (0.0211) (0.0302) (0.0521)

a12 −0.05 −0.0660 −0.0471 −0.0561 −0.0590 −0.0427 −0.0622 −0.0538 −0.0405 −0.0493
(0.0762) (0.0837) (0.1147) (0.0450) (0.0484) (0.1109) (0.0207) (0.0228) (0.0463)

a21 0.01 0.0178 0.0181 0.0187 0.0135 0.0139 0.0141 0.0117 0.0121 0.0121
(0.0380) (0.0375) (0.0395) (0.0229) (0.0224) (0.0237) (0.0107) (0.0105) (0.0120)

a22 0.95 0.9057 0.8920 0.8979 0.9274 0.9128 0.9218 0.9423 0.9272 0.9374
(0.0548) (0.0527) (0.0531) (0.0321) (0.0306) (0.0315) (0.0175) (0.0162) (0.0190)

τ 100 104.80 104.81 103.19 101.96 101.81 100.15 100.84 101.05 98.568
(10.600) (11.270) (11.523) (7.3299) (8.6860) (10.245) (4.2393) (4.3596) (8.6143)

a10 −0.07 −0.1336 −0.1351 −0.1357 −0.0975 −0.0991 −0.0992 −0.0797 −0.0813 −0.0808
(0.0817) (0.0815) (0.0825) (0.0474) (0.0473) (0.0477) (0.0236) (0.0235) (0.0243)

a20 0.01 0.0152 0.0152 0.0152 0.0148 0.0148 0.0149 0.0115 0.0115 0.0116
(0.0534) (0.0533) (0.0534) (0.0286) (0.0285) (0.0287) (0.0153) (0.0153) (0.0154)

a11 0.95 0.9035 0.9000 0.9020 0.9302 0.9265 0.9289 0.9431 0.9394 0.9423
(0.0596) (0.0593) (0.0602) (0.0349) (0.0347) (0.0351) (0.0178) (0.0176) (0.0182)

a12 −0.05 −0.0719 −0.0705 −0.0727 −0.0633 −0.0619 −0.0646 −0.0558 −0.0544 −0.0566
(0.0862) (0.0859) (0.0879) (0.0458) (0.0457) (0.0473) (0.0234) (0.0233) (0.0245)

a21 0.01 0.0165 0.0165 0.0166 0.0147 0.0147 0.0148 0.0115 0.0115 0.0115
(0.0378) (0.0378) (0.0379) (0.0208) (0.0208) (0.0209) (0.0110) (0.0110) (0.0111)

a22 0.95 0.8943 0.8933 0.8938 0.9237 0.9226 0.9233 0.9399 0.9388 0.9397
(0.0553) (0.0552) (0.0551) (0.0313) (0.0313) (0.0313) (0.0172) (0.0171) (0.0172)

τ 1000 1051.7 1051.7 1051.3 1025.8 1025.8 1025.5 1008.9 1008.9 1008.8
(106.73) (106.73) (106.73) (74.069) (74.069) (74.051) (44.105) (44.104) (44.088)

Note: For each cell, the statistics given are based on 500 simulated samples, each consisting of a time series of length T = 100, 200, and 500. The mean
and root mean squared error (in parentheses) for each estimator are shown.

The generated process (yt) follows the alr-VAR(1) process under (13). It is also equivalent to a clr-VAR(1) process with
x∗
t = P2xt . That is,

clr∗(yt) =


a∗

10
a∗

20


+


a∗

11 a∗

12
a∗

21 a∗

22


clr∗(yt−1)+ ε∗

t , ε∗

t ∼ N


0,

σ ∗

1
2

ρ∗σ ∗

1 σ
∗

2
ρ∗σ ∗

1 σ
∗

2 σ ∗

2
2


.

The induced parameters are σ ∗

1 = 0.0325, σ ∗

2 = 0.0325, ρ∗
= −0.6579, and

a∗

10 = −0.05, a∗

20 = 0.03, a∗

11 = 0.91, a∗

12 = −0.07, a∗

21 = 0.03, a∗

22 = 0.99.

We then estimate the generated data with the alr-DAR(1), clr-DAR(1), alr-VAR(1), and clr-VAR(1) models, respectively.
Each simulation is repeated 500 times. Table 2 presents the simulation results. Both the means and standard errors of the
estimates and the means of the residual sum of squares (mRSS) are reported. The mRSS for ith composition is defined as:

mRSSi =
1

500

500
ℓ=1

T
t=1

(y(ℓ)it −µ(ℓ)it )
2,



T. Zheng, R. Chen / Journal of Multivariate Analysis 158 (2017) 31–46 41

Table 2
Simulation results of estimating and fitting the alr-VAR(1) model.

Parameter True alr-DAR alr-VAR Parameter True∗ clr-DAR clr-VAR

a10 −0.07 −0.0813 −0.0812 a∗

10 −0.05 −0.0583 −0.0582
(0.0216) (0.0214) (0.0139) (0.0137)

a20 0.01 0.0122 0.0122 a∗

20 0.03 0.0352 0.0352
(0.0215) (0.0215) (0.0138) (0.0137)

a11 0.95 0.9418 0.9418 a∗

11 0.91 0.8981 0.8982
(0.0162) (0.0160) (0.0229) (0.0226)

a12 −0.05 −0.0543 −0.0543 a∗

12 −0.07 −0.0752 −0.0751
(0.0155) (0.0153) (0.0227) (0.0225)

a21 0.01 0.0121 0.0121 a∗

21 0.03 0.0330 0.0329
(0.0158) (0.0158) (0.0239) (0.0238)

a22 0.95 0.9400 0.9399 a∗

22 0.99 0.9836 0.9835
(0.0178) (0.0177) (0.0255) (0.0254)

τ 2539.8 τ 2539.8
(124.74) (124.86)

σ1 0.05 0.0498 σ ∗

1 0.0325 0.0324
(0.0016) (0.0010)

σ2 0.05 0.0498 σ ∗

2 0.0325 0.0324
(0.0016) (0.0010)

ρ 0.30 0.2983 ρ∗
−0.6579 −0.6585

(0.0402) (0.0248)

mRSS1 1.3330 1.3333 1.3330 1.3333
mRSS2 6.7172 6.7173 6.7172 6.7173
mRSS3 5.7336 5.7339 5.7336 5.7339

Note: For each cell, the statistics given are based on 500 simulated samples, each consisting of a time series of length T = 500. The mean and root mean
squared error (in parentheses) of the parameter estimates and the mean of the residual sum of squares (mRSS × 10−2) estimated with different models
are shown.

where y(ℓ)it is the ℓth simulation of yit at time t and µ(ℓ)it is the corresponding fitted value. From the table, we can see that
the estimates of the AR coefficient matrices under the alr-VAR (clr-VAR) model are very close to the estimates under the
alr-DAR (clr-DAR) model. The residual sums of squares are also very close, although the DARmodel has less total number of
parameters. This shows that the DAR models perform well even though the true model is a tVAR model. The impact of the
linear reparametrization in this example is minimal, although the variation in the estimates can be different.

5. Analyzing expenditure shares in the UK

In this application, we use the alr-DAR and alr-VAR models to fit a quarterly compositional time series of consumption
(y1), investment (y2), government expenditure (y3), and export (y4) shares of the UK gross final expenditure from the first
quarter of 1955 to the fourth quarter of 2013, a total of 236 observations. The data are seasonally adjusted and are shown
in Fig. 2. The subperiod (1955:Q1–2005:Q4) of these data set has been analyzed by Mills [29] and Barceló-Vidal, Aguilar and
Martín-Fernández [4].

For alr modeling, we use export y4t as the reference component, and the y-link function is alr(yt) = (ln(y1t/y4t),
ln(y2t/y4t), ln(y3t/y4t))⊤. Based on the Bayesian information criteria (BIC), the order of the alr-DAR process is determined
to be p = 2, which is consistent with that found by Mills [29]. The corresponding alr-VAR model on alr(yt) assumes the
form

alr(yt) = A0 + A1alr(yt−1)+ A2alr(yt−2)+ εt , εt ∼ N (0,DRD),

where D = diag(σ1, σ2, σ3) and R = (ρij) with ρij = ρji and ρii = 1 for all i, j ∈ {1, 2, 3}. We also tried the equivalent
clr-VAR models and found that the impact of reparametrization is very small. Hence, the results will not be reported.

The estimation results are shown in Table 3. The top panel shows the estimates and their standard errors obtained from
the estimated Fisher information matrices. The estimates reported under the alr-DAR model are exact MLEs. It can be seen
that the parameter estimates of the AR coefficient matrices from the alr-DAR model are close to those from the alr-VAR
model. Again, if the true model is indeed alr-DAR, then the estimate of the coefficient matrices under the alr-VAR model
should be the same as GMLE under the truemodel of the alr-DAR, which should be close toMLE under alr-DAR. The standard
errors of the alr-DAR model parameters are generally smaller than the corresponding ones under the alr-VAR model. The
DAR models have an extra concentration parameter τ , while the tVAR models have error covariance matrices.
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(a) Consumption. (b) Investment.

(c) Government expenditure. (d) Export.

Fig. 2. The shares of UK gross final expenditure and the fitted values with alr-DAR and alr-VAR models.

In the bottom panel of Table 3, we present several statistics to compare the different methods. In the first four rows, RSS i
stands for the residual sum of squares for the ith component, which is defined by

RSS i =

T
t=1

(yit −µit)
2,

whereµit is the fitted value of yit . Fig. 2 plots the fitted values under the alr-DAR and alr-VAR models. For the DAR models,
µ̂it = α̂it/τ̂ for all i ∈ {1, 2, 3, 4}. Based on the results of the RSS i, the alr-DAR model performs slightly better than the
alr-VAR model.

Finally,we perform several statistical tests to check the autocorrelation andnormality of theARMA residuals. The residual
series of the alr-DAR is obtained as alr(yt) − η̂t . It should behave as a martingale process according to (3), but should not
be normally distributed. The residual series of the alr-VAR are based on the AR(2) model on the transformed series alr(yt).
Fig. 3 plots the alr-DAR residuals. The vector Portmanteau test statistics of Li andMcLeod [25] is based on the residual series,
and is shown as VQ (4) and VQ (12) in Table 3, using orders 4 and 12, respectively. There is no autocorrelation left in the
residuals for both models, indicating that the selected lag order p = 2 is sufficient. In addition, the vector normality test
statistic of Doornik and Hansen [18] for the residuals is shown as VN in the table. Apparently the normal assumption of the
alr-VAR(2) is inappropriate, with the statistic 12.8 and a p-value of 0.047. The vector normality test also confirmed that the
alr-DAR(2) residual process is not normally distributed, with the statistic 14.8 and a p-value of 0.02.

Fig. 4 plots the conditional covariancematrices under the alr-DARmodel based on (7). It is clearly not constant. Note that
the alr-VAR model assumes constant conditional covariance.

6. Conclusions and discussion

This paper presented a new class of compositional time series models on the simplex, assuming a Dirichlet conditional
distribution of the observations, with time varying Dirichlet parameters. The varying parameters, via a suitable link function,
follow a vector ARMA type of structure. The framework is general in modeling compositional time series, and provides a
cleaner and easier interpretation than the existing tVARMA models. Empirical study shows that when the underlying data
generating mechanism is indeed a DARMA model, the estimation results from DARMA model are indeed better than that
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Fig. 3. Residuals of estimated alr-DAR model.

Table 3
Estimation results with alr-DAR and alr-VAR models.

alr-DAR alr-VAR

A0


− 0.0234

(0.0257)
− 0.0869

(0.0337)
− 0.0223

(0.0326)




− 0.0273
(0.0317)

− 0.0915
(0.0408)

− 0.0258
(0.0344)



A1


1.0259
(0.1202)

− 0.1054
(0.0562)

− 0.0549
(0.0992)

0.4376
(0.1579)

0.5765
(0.0747)

− 0.1824
(0.1308)

0.1392
(0.1524)

− 0.1178
(0.0715)

0.8638
(0.1260)



1.0152
(0.1483)

− 0.0964
(0.0695)

− 0.0718
(0.1229)

0.4437
(0.1910)

0.5804
(0.0895)

− 0.2069
(0.1583)

0.1249
(0.1610)

− 0.1046
(0.0755)

0.8438
(0.1335)



A2


0.0214
(0.1207)

0.1258
(0.0569)

− 0.0496
(0.0994)

− 0.3767
(0.1586)

0.4292
(0.0756)

0.0539
(0.1311)

− 0.1347
(0.1531)

0.1683
(0.0725)

− 0.0100
(0.1262)




− 0.0074
(0.1490)

0.1162
(0.0704)

− 0.0351
(0.1230)

− 0.3789
(0.1919)

0.4257
(0.0907)

0.0737
(0.1585)

− 0.1171
(0.1618)

0.1545
(0.0765)

0.0089
(0.1336)


τ 8158.6

(2.9454)

D


0.0360
(0.0017)

0 0

0 0.0464
(0.0021)

0

0 0 0.0392
(0.0018)



R


1 0.7225

(0.0312)
0.8740
(0.0154)

0.7225
(0.0312)

1 0.6254
(0.0398)

0.8740
(0.0154)

0.6254
(0.0398)

1


RSS1 (10−3) 5.1918 5.1962
RSS2 (10−3) 3.6329 3.6348
RSS3 (10−3) 1.8435 1.8455
RSS4 (10−3) 7.5436 7.5565
Loglik 2881.82 1513.24
BIC −5643.6 −2879.19
VQ (4) 34.918 38.540
VQ (12) 119.71 118.58
VN 14.907* 12.834*

* Indicates that the test statistic is significant at 5% levels. The standard deviation errors of the parameter estimates are reported in parentheses.

from a tVARMA model, though the ARMA parameter estimators of the tVARMA can be treated as the Gaussian pseudo-
likelihood estimator. On the other hand, if the underlying data generating mechanism is actually a tVARMAmodel, fitting a
DARMA model to the data, though more computationally costly, performs almost the same as that under the true model.

However, many questions remain. The probabilistic properties of the model, including stationary and ergodic conditions
of the process is under investigation. Although representation (3) has a clear ARMA structure, the noise is a MDS with
conditional heteroscedasticity. Its stationary and ergodic conditions are not trivial. The framework ofMeyn and Tweedie [26]
can be used, similar to the approach used by Zheng et al. [38]. The asymptotic properties of the MLE and GMLE need to
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Fig. 4. Estimated conditional covariance matrices with the alr-DAR model.

be established. Another issue of the DARMA model is the relatively rigid conditional covariance structure of the Dirichlet
distribution, although the conditional covariances change over time. One may use a generalized Dirichlet distribution [14]
to increase flexibility.
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Appendix. Proofs

A.1. Proof of Proposition 1

We express the Dirichlet distribution in its exponential family representation:

f (y | α) = H(y) exp{ϑ⊤T (y)− A(ϑ)},

where H(y) = (y1 · · · yK )−1, ϑ = (α1, . . . , αK )
⊤, T (y) = (ln y1, . . . , ln yK )⊤,

A(ϑ) =

K
i=1

lnΓ (αi)− lnΓ (τ ),

and τ = α1 + · · · + αK .
For a distribution in the exponential family, the expectation of T (y) is E{T (y)} = ∂A(ϑ)/∂ϑ and its associated conditional

variance is var{T (y)} = ∂2A(ϑ)/∂ϑ∂ϑ⊤. Since τ = α1 + · · · + αK , we have

E(ln yi) =
∂A(ϑ)
∂ϑi

=
∂ lnΓ (αi)

∂αi
−
∂ lnΓ (τ )
∂τ

∂τ

∂αi
= ψ(αi)− ψ(τ)



T. Zheng, R. Chen / Journal of Multivariate Analysis 158 (2017) 31–46 45

and its associated conditional covariance is

cov(ln yi, ln yj) =
∂2A(ϑ)
∂ϑi∂ϑj

=
∂ψ(αi)

∂αj
−
∂ψ(τ)

∂τ

∂τ

∂αj
= ψ1(αi)δij − ψ1(τ ),

where ψ is the digamma function, ψ1 is the trigamma function, and δij is the Kronecker delta satisfying that δij = 1 if i = j
and δij = 0 if i ≠ j.

Further, for all i ∈ {1, . . . , K − 1}, we have

E{ln(yi/yK )} = E(ln yi − ln yK ) = ψ(αi)− ψ(αK )

and the covariance between ln(yi/yK ) and ln(yj/yK ) is

cov[ln(yi/yK ), ln(yj/yK )]
= cov(ln yi, ln yj)− cov(ln yi, ln yK )− cov(ln yK , ln yj)+ cov(ln yK , ln yK )
= ψ1(αi)δij − ψ1(αi)δiK − ψ1(αK )δKj + ψ1(αK )δKK .

Since i, j < K , we have δiK = δKj = 0 and δKK = 1. Therefore,

cov{ln(yi/yK ), ln(yj/yK )} = ψ1(αi)δij + ψ1(αK ).

Putting these results into the vectors and the matrices, the conclusion follows. �

A.2. Proof of Proposition 2

The system of equations g(α) = η and τ = α1 + · · · + αK can be rewritten as
ψ(α1)− ψ(τ − α1 − · · · − αk) = η1
ψ(α2)− ψ(τ − α1 − · · · − αk) = η2

...
ψ(αk)− ψ(τ − α1 − · · · − αk) = ηk,

(A.1)

whereψ is a digamma function and αK = τ − α1 − · · · − αk. We first show that there is a solution that satisfies the system
of equations (existence), and then we prove that the solution is unique.

(i) Existence. Let g(k)(αk, τ ) be a k dimensional function on the domain of αi > 0 and τ = α1 +· · ·+αK . The ith function
of g(k)(αk, τ ) is

g(k)i (αk, τ ) = ψ(αk)− ψ(τ − α1 − · · · − αk).

Wewill show that the codomain of g(k)(αk, τ ) is the entire Rk for any τ . For this, we use induction. For k = 1, g(1)1 (α1, τ ) =

ψ(α1)− ψ(τ − α1) is a continuous function. For any τ > 0,

lim
α1→0

g(1)1 (α1, τ ) = lim
α1→0

ψ(α1)− ψ(τ) = −∞,

and

lim
α1→τ

g(1)1 (α1, τ ) = ψ(τ)− lim
α1→τ

ψ(τ − α1) = ∞.

Hence, the codomain of g(k)(αk, τ ) is R for any τ > 0. Assume at k, the codomain of g(k)(αk, τ ) is Rk for any τ > 0. Now
consider g(k+1)(αk+1, τ ). For any (η1, . . . , ηk, ηk+1) ∈ Rk+1, 0 < c < τ , because the codomain of g(k)(αk, τ − c) is Rk. We
can then find a set ofαk = (α1, . . . , αk) that satisfies g(k)(αk, τ−c) = ηk, where ηk = (η1, . . . , ηk) andα1+· · ·+αk < τ−c.
Since this solution depends on c , we denote it as αk(c).

Let s(c) = α1(c)+ · · · + αk(c). By the uniqueness shown below, if there is a solution, the solution is unique. Therefore,
s(0) is a fixed finite number, the sum of the solutions of g(k)(αk, τ ) = ηk, and s(c) < τ − c . Let

g∗(c, τ ) = ψ(c)− ψ(τ − s(c)− c).

We have

lim
c→0

g∗(c, τ ) = lim
c→0

ψ(c)− ψ{τ − s(0)} = −∞,

and when c → τ , 0 < τ − s(c)− c < τ − c → 0, hence ψ{τ − s(c)− c} → −∞. Therefore,

lim
c→τ

g∗(c, τ ) = ψ(τ)− lim
c→τ

ψ{τ − s(c)− c} = ∞.

Since g∗(c, τ ) is a continuous function, one can find a solution c∗ such that g∗(c∗, τ ) = ηk+1. Letαk = αk(c∗) and αk+1 = c∗.
We then have g(k+1)(αk+1, τ ) = ηk+1, and the codomain of g(k+1)(αk+1, τ ) is Rk+1 for any τ .
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(ii) Uniqueness. Suppose α0
= (α0

1, . . . , α
0
k )

⊤ is one solution of the system (A.1), and α1
= (α1

1, . . . , α
1
k )

⊤ is a different
solution. Without loss of generality, we assume that α0

1 < α1
1 . Hence, we have ψ(α0

1)− ψ(α1
1) < 0 due to the fact that the

digamma function ψ is strictly increasing.
Based on the first equation of the system,we haveψ(α0

1)−ψ(τ−α0
1−· · ·−α0

k ) = η1 andψ(α1
1)−ψ(τ−α1

1−· · ·−α1
k ) =

η1. Consider the difference between the two equations, viz.

ψ(τ − α0
1 − · · · − α0

k )− ψ(τ − α1
1 − · · · − α1

k ) = ψ(α0
1)− ψ(α1

1) < 0. (A.2)

Next, consider the ith equation of the system. Again, taking the difference of the two equations and using (A.2), we have

ψ(α0
i )− ψ(α1

i ) = ψ(τ − α0
1 − · · · − α0

k )− ψ(τ − α1
1 − · · · − α1

k ) < 0.

Since ψ is strictly increasing, we have α0
i < α1

i for all i ∈ {1, . . . , k}. However, (A.2) implies that τ − α0
1 − · · · − α0

k <

τ − α1
1 − · · · − α1

k , which results in a contradiction. Therefore, the solution of the system (A.1) is unique. �
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