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A B S T R A C T

This paper develops a stochastic volatility-mixed frequency data sampling (SV-MIDAS) model with low frequency
macro variables and further extends it to an asymmetric SV-MIDAS model. Empirical study is then implemented
on both Chinese and U.S. stock markets. Our results show that the SV-MIDAS model is useful to identify the
macroeconomic volatility source of stock volatility and improve the in-sample fitting performance. Moreover, the
out-of-sample forecast performances of SV-MIDAS model are significantly superior to that of traditional SV model
for both Chinese and U.S. stock markets. In particular, among the macroeconomic variables, the Composite
Leading Indicator has the best forecast performance. In addition, we find that the asymmetric SV-MIDAS model is
applicable for capturing leverage effects in both stock markets and it outperforms the corresponding benchmark
model in the in-sample fitting.
1. Introduction

The volatility forecast is important for asset pricing and risk man-
agement. One of the most popular volatility models is the generalized
autoregressive conditional heteroskedasticity (GARCH) family of models
(Engle, 1982; Bollerslev, 1986; Engle et al., 2013). As an alternative
approach, the stochastic volatility (SV) model proposed by Taylor (1994)
has been developed in financial econometrics (Alizadeh et al., 2002;
Jensen and Maheu, 2010; Kanaya and Kristensen, 2016; Kastner et al.,
2017). In fact, comparing with the GARCH models, the SV model can
naturally matched with some financial theory such as continuous time
asset pricing model. Recently, many literatures apply the SV model and
its extensions to estimate and forecast volatility (Ding and Vo, 2012;
Chan and Grant, 2016; Takahashi et al., 2016; Peiris et al., 2017).

Although SV models offer a framework for volatility prediction, only
one unobservable factor drives the volatility process in traditional SV
models. Obviously, this single factor specification fails to link other
important factors with the volatility (Shang and Liu, 2017). It has become
a barrier for the SV models to improve the fitting and forecast perfor-
mance. Instead, many researches, such as Engle and Lee (1999), have
shown that the volatility process is driven by different factors.
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Furthermore, Engle and Rangel (2008) point out that the volatility
research should pay more attention to the macroeconomic source of the
stock volatility. Chen et al. (2017) find that the conditional volatility of
stock pricing factors is significantly related to economic uncertainty.
Meanwhile, the related financial theory also shows that a close link exists
between the macro economy and stock market volatility (Bansal and
Yaron, 2004; Wachter, 2013). These studies suggest that macroeconomic
variables could be seen as one of the components or forces that drive the
volatility in SV model.

It is well known that the macroeconomic variables are observed at the
lower frequency than the stock market variables. To introduce macro-
economic variables into the volatility model, several mixed frequency
volatility models have been proposed in recent years (Engle and Rangel,
2008; Engle et al., 2013). Engle and Rangel (2008) first propose a
Spline-GARCH model that connects high-frequency volatility with
low-frequency realized volatility. It is noteworthy that Engle et al. (2013)
further propose the GARCH-MIDAS (mixed-frequency data sampling)
model. The GARCH-MIDAS model allows us to extract long-term and
short-term component. And the low frequency macroeconomic variables
usually explain this long-term component.

The GARCH-MIDAS model decomposes the stock volatility into two
ver, bear full responsibility for all remaining flaws. The project was supported by
e Fundamental Research Funds for the Central Universities (No. 20720191072),
BK1902058).
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different components, which helps to identify the macroeconomic source
of stock volatility. Moreover, this approach leads naturally to a fore-
casting tool for volatility (Becker and Clements, 2007). Asgharian et al.
(2013) have showed that the GARCH-MIDAS model with low-frequency
macroeconomic information might improve its prediction ability, espe-
cially for the long-term variance component. Zheng and Shang (2014)
propose a multiple factor GARCH-MIDAS model and find that it shows
better performance for forecasting the volatility of Chinese stocks. As far
as we know, under the framework of GARCH family model, there have
been a lot of researches on the mixed-frequency volatility model with
macro variables. However, there are few studies on how to build a
mixed-frequency SV model with low-frequency macro variables.

In this paper, we develop a mixed-frequency SV model with macro
variables that is referred to as the SV-MIDAS model. Shang and Liu
(2017) have built the SV model with mixed frequency information.
Beyond Shang and Liu (2017), this paper pays more attention to the rule
of some crucial macroeconomic variables. And we further extend the
asymmetric SV-MIDAS or ASV-MIDAS model. Specifically, we decom-
pose the volatility into a stochastic component and a deterministic (sta-
ble) component. The stochastic component maintains the same form as
traditional SV models, whereas the stable component is driven by a
low-frequency macro variable. This mixed-frequency specification helps
to gain insight into macroeconomic sources of volatility and then
improve the volatility forecast.

Other contributions can be summarized from two aspects. First, the
in-sample fitting and out-of-sample forecast performance of the proposed
model are investigated for both Chinese and United States stock markets.
We choose both the low-frequency volatility measure (e.g., monthly
realized range) and a macroeconomic variable (e.g., Composite Leading
Indicator,1 CPI and M1) as the low-frequency variable. The results show
that the SV-MIDAS model outperforms the traditional SV model in the in-
sample fitting and out-of-sample performances. Moreover, the volatility
of macroeconomic fundamentals has a positive effect on the stable
component of stock market volatility. This implies that the SV-MIDAS
model can identify the macroeconomic volatility source of stock
volatility.

Second, we extend the SV-MIDAS model to include a leverage effect,
referred to as the ASV-MIDAS model and its empirical application are
also discussed. Our empirical results show there is a weaker leverage
effect exists in China’s stock market, which is consistent with the results
from Shen and Zheng (2009) and Ouyang et al. (2014). In the presence of
leverage effect, the volatility of the macroeconomic fundamentals still
shows a positive effect on the stable component. Furthermore, we find
that the ASV-MIDAS model outperforms the traditional SV model in
in-sample fitting. But the out-of-sample forecast results for the
ASV-MIDAS model are worse than those of the SV-MIDAS model.

The remainder of this paper is organized as follows. In Section 2, we
introduce the model specifications and estimation approach. In Section 3,
this paper presents the empirical mixed frequency data information. The
empirical results are shown in Section 4. Section 5 concludes the paper.

2. The methodology

2.1. Traditional SV model

Following Harvey et al. (1994), Sandmann and Koopman (1998), and
so on, the traditional SV model is given by:

ri ¼ e
1
2hiεi (1)

hiþ1 ¼ μþ φðhi � μÞ þ ηi (2)
1 Composite Leading Indicator is the index to reflect the future state of mac-
roeconomic. It is often published by official statistical department.
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εieNð0; 1Þ (3)

ηieN�0; σ2
η

�
(4)

where ri is the log return at the i-th day; hi � lnðσ2i Þ is the log variance; μis
intercept of Eq (2) and φis coefficient of Eq (2). εiis a Gaussian white
noise process with unit variance. ηiis a stochastic process with variance
σ2η .

For the quasi-maximum likelihood estimation suggested by Harvey
et al. (1994), the basic SV model can be rewritten in the following state
space form:

yi ¼ hi þ ξi (5)

hiþ1 ¼ μþ φðhi � μÞ þ ηi (6)

whereyi ¼ lnðr2i Þ,ξi ¼ lnðε2i Þ; ξi is assumed to follow the log-chi-square
distribution with one degree of freedom, i.e., lnðχ21Þ, with its mean
being �1.2704 and variance being 1

2π
2; ηieNð0; σ2η Þ; and ξi and ηi are

mutually independent.

2.2. SV-MIDAS model

For notational simplicity, we mark the variable with an appropriate
frequency symbol. Denote ri;t as the log return rate on day t during month
(quarterly, year) i. Let Nt as the number of days exist in period t. Refer-
ring to Engle et al. (2013), the equation for the log return is specified as
follows:

ri;t ¼ σi;t
ffiffiffiffi
τt

p
εi;t (7)

where σ2i;tτt is the variance and consists of two components: σ2i;t and τt .The
error term εi;t is assumed to follow the standard normal distribution, i.e.,
εi;t
��ψ i�1;teNð0;1Þ.
The first component σi;t is viewed as a stochastic component, which is

driven by day-to-day liquidity concerns and possibly other short-term
shocks. Let hi;t ¼ ln σ2i;t , which can be expressed as follows:

hiþ1;t ¼ ~φhi;t þ ηi;t (8)

where ηieNð0;σ2η Þ,εi;t and ηi;t are mutually independent.
The second component τt is considered a stable component deter-

mined by the low-frequency macroeconomic or financial variable. The
MIDAS method, proposed by Ghysels et al. (2004), is used to construct
the stable component equation. Following Engle et al. (2013), the stable
component τt driven by the low-frequency macroeconomic variable can
be expressed as follows:

ln τt ¼mþ θ
XP
p¼1

ϕpðω1;ω2ÞXn
t�p; (9)

where m is a constant, θ is the response to the MIDAS structure, P is a
maximum lag order defined as the MIDAS lag year (Engle et al., 2013),
and Xn

t is a normalized low frequency macroeconomic variable. We
denote ω1 and ω2are parameters of weighting function. The weighting or
smoothing function ϕpðω1;ω2Þis often defined as the “Beta” lag structure:

ϕpðω1;ω2Þ¼ f ðp=P;ω1;ω2ÞPP
p¼1f ðp=P;ω1;ω2Þ

; (10)

where

f ðx; a; bÞ¼ xa�1ð1� xÞb�1Γðaþ bÞ
ΓðaÞ þ ΓðbÞ : (11)
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Equations (7)–(11) form the SV-MIDAS model with low frequency
variable. This mixed frequency model links the low frequency macro
variables with high frequency log return. The macro variables have pri-
marily effect on stable component of the stock volatility.

In the literature, the low-frequency variable is often selected as a
long-run volatility measure (Engle et al., 2013; Zheng and Shang, 2014).
For example, this variable is sometimes measured using realized vola-
tilityRVt ¼ PNt

i¼1r
2
i;t , and thus Xn

t�k is the normalized log realized vola-
tility. An alternative measure is the realized range volatility based on the
price range information,2 which can be defined as

RGt ¼ 1
4*lnð2Þ

XNt

i¼1

ðlnðHi;tÞ � lnðLi;tÞÞ2 (12)

where Hi;t and Li;t represent the highest and lowest price on day i during
month (quarterly, year) t, respectively.

More importantly, we include a macroeconomic variable into the SV-
MIDAS model, which can be completed by replacing Xn

t with this cor-
responding macroeconomic variable. This type of model helps us inves-
tigate the macroeconomic source of stock volatility. It also helps us to
find the contribution of the macroeconomic variable to volatility fore-
casting.

In order to estimate the parameters easily, we could rewrite the above
SV-MIDAS model into approximate model,3 see Kim et al. (1998) and
Nakajima and Omori (2009). Lety*i;t ¼ yi;t � lnðτtÞ, this approximate
model is expressed as follows:

y*i;t ¼ hi;t þ ξ*i;t; hiþ1;t ¼ ~φhi;t þ ηi;t (13)

where. ξ*i;t ¼ lnðε2i;tÞ
Conditional on the indicatorsi 2 f1;2; …Kg, Equation (13) can be

further rewritten by: 
y*i;t
hi;tþ1

!
¼
�

hi;t
~φhi;t

�
þ
 
ξ*i;t
ηi;t

!
(14)

( 
ξ*i;t
ηi;t

!�����si ¼ k

)
¼
 
mk þ νkz

ð1Þ
i;t

σηz
ð2Þ
i;t

!
(15)

where both zð1Þi;t and zð2Þi;t follow the standard normal distribution with zero
mean and unity variance.

2.3. ASV-MIDAS model

We can further extend the SV-MIDAS model to take into account the
leverage effect. This extension leads to the asymmetric SV-MIDAS or
ASV-MIDAS model. Many studies have found an asymmetric feature—a
leverage effect—in stock market volatility (e.g., Nelson, 1991; Harvey
and Shephard, 1996; Yu, 2005; Omori et al., 2007). Yu (2005) pointed
out that the asymmetric SV model is often formulated in terms of sto-
chastic differential equations.

In continuous-time, we have a logarithmic asset price pði; tÞ and the
corresponding volatilityσ2ði; tÞ. The asymmetric SV model can then be
specified as follows:

dpði; tÞ¼ σ2ði; tÞdB1ði; tÞ (16)
2 Parkinson (1980) advocated using range information to estimate volatility.
Modeling volatility based on range information has been a topic of increasing
focus by researchers.
3 The ‘approximation’ of the model means that the log chi-square distribution

is approximated by a mixture of K-component Gaussian densities with compo-
nent probability.

464
d ln σ2ði; tÞ¼α0 þ α1 ln σ2ði; tÞ þ σηdB2ði; tÞ (17)

where, B1ði;tÞandB2ði;tÞare two Brownian motions. corrðdB1ði;tÞ;dB2ði;tÞ
Þ ¼ ρ. If the correlation coefficient ρ is negative, then a leverage effect
exists (Yu, 2005; Omori et al., 2007).

These equations are often discretized using the Euler-Maruyama
approximation method. Then we have the following discrete-time ASV
model.

ri;t ¼ σi;tεi;t (18)

ln σ2
iþ1;t ¼α0 þ ~φln σ2

i;t þ ηi;t (19)

�
εi;t
ηi;t

�eNð0;ΣÞ;Σ¼
 

1 ρση
ρση σ2

η

!
; (20)

where ri;t ¼ pði þ 1;tÞ� pði;tÞ, εi;t ¼ B1ði þ 1;tÞ� B1ði;tÞ, ηi;t ¼ σηðB2ði þ
1; tÞ � B2ði; tÞÞ, and corrðεi;t ;ηi;tÞ ¼ ρ, and ~φ ¼ 1þ α1.

The specification of ASV-MIDAS model is also same as SV-MIDAS
model. The log return in ASV-MIDAS model is also specified as
follows:ri;t ¼ σi;t

ffiffiffiffi
τt

p
εi;t . But the ASV-MIDAS model is different from the

SV-MIDAS model by its specification of the correlation between εi;t and
ηi;t .

Similar to SV-MIDAS model, lety*i;t ¼ yi;t � lnðτtÞ. Following Nakajima
and Omori (2009), we also rewrite the ASV-MIDAS model as the
following approximate model: 

y*i;t
hi;tþ1

!
¼
�

hi;t
~φhi;t

�
þ
 
ξ*i;t
ηi;t

!
(21)

( 
ξ*i;t
ηi;t

!�����si ¼ k; di

)
¼
0@ mk þ νkz1i;t

diρση

�
ak þ bkνkz1i;t

	
expðmk=2Þ þ ση

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

q
z2i;t

1A
(22)

where bothaville the standard normal distribution with zero mean and
unity variance, and di ¼ signðyi;tÞ.
2.4. MCMC estimation approach

One of the most popular estimation methods for SV model is the
Markov Chain Monte Carlo (MCMC) approach. Following Kim et al.
(1998) and Nakajima and Omori (2009), we approximate the log
chi-square distribution using a K-component mixture of the normal dis-
tribution, and then estimate the mixture approximation model with the
MCMC method.

To estimate SV-MIDAS model, we assume the distribution of ξ*i;t in
Equation (14) is a mixture of the normal distribution. Then we have:

f
�
ξ*i;t

	
¼
XK

k¼1
qkfN

�
ξ*i;t

���mk ; ν2k
	

(23)

The distribution of ξ*i;t is a mixture of K-component Gaussian densities
with component probability qk. According to Nakajima and Omori
(2009), we setK ¼ 10. Table 1 provides the weights, means, and vari-
ances of normal distribution mixtures.

Based on this approximated model, we present the Bayesian MCMC
method for estimating the SV-MIDAS model. More details on the poste-
rior distribution of parameters and the related sampling process are
shown the Appendix.

To facilitate parameter estimation of ASV-MIDAS model, the distri-
bution of ξ*i;t in Equation (21) is also the mixture of the normal distri-
bution. Referring to Nakajima and Omori (2009), we also approximate
the lnðχ21Þ with 10-component normal distribution. The related



Table 1
Mixtures of normal distributions for the SV-MIDAS model.

k qk mk ν2k

1 0.0061 1.9268 0.1127
2 0.0478 1.3474 0.1779
3 0.1306 0.7350 0.2677
4 0.2067 0.0227 0.4061
5 0.2272 �0.8517 0.6270
6 0.1884 �1.9728 0.9858
7 0.1205 �3.4679 1.5747
8 0.0559 �5.5525 2.5450
9 0.0158 �8.6838 4.1659
10 0.0012 �14.6500 7.3334

Note: Source from Nakajima and Omori (2009). qk is the weight of the k-th
normal distribution.mkis the mean of the k-th normal distribution.ν2kdenote the
variance of the k-th normal distribution.

Table 2
The mixture of normal distributions for the ASV-MIDAS model.

k qk mk ν2k ak bk

1 0.0061 1.9268 0.1127 1.0142 0.5071
2 0.0478 1.3474 0.1779 1.0225 0.5112
3 0.1306 0.7350 0.2677 1.0340 0.5170
4 0.2067 0.0227 0.4061 1.0521 0.5260
5 0.2272 �0.8517 0.6270 1.0815 0.5408
6 0.1884 �1.9728 0.9858 1.1311 0.5656
7 0.1205 �3.4679 1.5747 1.2175 0.6088
8 0.0559 �5.5525 2.5450 1.3745 0.6873
9 0.0158 �8.6838 4.1659 1.6833 0.8416
10 0.0012 �14.6500 7.3334 2.5010 1.2505

Note: Source from Nakajima and Omori (2009).

5 T�1PT ðbσ2 � σ2ÞðT�1PT ðbσ2�σ2ÞðT�1PT ðbσ2�σ2Þ2Þ
1=2

, where bσ2is the
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information for ASV-MIDAS model is shown in Table 2.

3. The data

The data of the Chinese and United States stock markets are selected
for empirical study. We collect the daily stock indices and low frequency
macroeconomic variables, such as Composite Leading Indicator, CPI, and
M1.

First, the daily prices of stock indices are used to compute the daily
returns, monthly realized volatility andmonthly realized range volatility.
We choose the close, high, and low prices of both the Shanghai Com-
posite Index (SH) and the S&P 500 (SP500) as the raw data. The data are
sampled from January 3, 1994 to June 30, 2015. The sample sizes of the
Shanghai Composite Index and the S&P 500 are 5244 and 5,216,
respectively. We calculate the log returns using the close price (Pi;t), i.e.,
ri;t ¼ ln Pi;t � ln Pi�1;t , and then compute the monthly realized volatility

RVt ¼ PNt
i¼1r

2
i;t . We also calculate the monthly realized range volatility

RGt ¼ ð4 ln 2Þ�1PNt
i¼1½lnðHi;tÞ � lnðLi;tÞ�2 as the proxy variable of low-

frequency volatility. The raw data are available from the WIND database.
Second, following Shyu and Hsia (2008), we choose Composite

Leading Indicator as the proxy for macroeconomic fundamentals. Zheng
and Wang (2013) pointed out that the Composite Leading Indicator can
capture China’s business cycle. Some studies considered industrial pro-
duction (IP) and other indexes as proxies of GDP or macroeconomic
fundamentals (Engle et al., 2013). However, IP cannot fully reflect the
macroeconomic state and business cycle. We also take the CPI as a proxy
for inflation that shows the influence of the price index on volatility, and
we take M14 as a proxy for monetary policy that may reflect the mech-
anism of monetary policy to financial volatility. The sample period is
from January 1994 to June 2015. Raw data are from the China National
4 Because of the absence of samples for M2 in China, this paper considers M1
as a proxy for a monetary supply.
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Bureau of Statistics (CNBS), the U.S. Bureau of Labor Statistics and the
Organization for Economic Cooperation and Development (OECD).

Fig. 1 plots the time series data including the log return, RV, RG, and
macroeconomic variables.

4. Empirical analysis

4.1. Priors

To estimate the SV-MIDAS model by MCMC approach, we should set
the prior information of parameters. The prior distributions of parame-
tersφ, ~φand ση are shown below. The prior distribution of φ and ~φ are the
beta distribution and that of σηis the inverse gamma distribution. More
specifically, for the Chinese stock market, the prior distributions of φ and
~φ are Betað50;1:5Þ, and that of ση is IGð0:5ν0; 0:5ν1Þ, where ν0 ¼ 50,
andν1 ¼ 0:01ν0. For the U.S. stock market, the prior distributions of φ
and ~φ are Betað20;1:5Þ, and ση follows IGð0:5ν0; 0:5ν1Þ, where ν0 ¼ 5,
and ν1 ¼ 0:01ν0. The total number of MCMC sampling of the posterior
distribution is 10,000. And we discarded the initial 2000 samples.

4.2. Estimation results

We estimate the SV-MIDAS(P) models with different measures and
different lag orders of P. Empirical studies, such as Engle et al. (2013),
usually use MIDAS lag years to reflect the lag period. For example, P ¼ 1
suggests one MIDAS lag year or, put differently, the SV-MIDAS (1) model
will contain the low frequency observations of last 12 months. Similarly,
in the SV-MIDAS (2) model, the low frequency information of last 24
months will be included. Moreover, we construct the SV-MIDAS(P)-RG
model using themonthly range volatility and the SV-MIDAS(P)-RVmodel
with the monthly realized volatility.

Table 3 reports the parameter estimation of the SV-MIDAS and
traditional SV models for the Chinese stock market. To compare the in-
sample fitting results, we also calculate the relative root-mean-square
error (rRMSE), which is defined as follows5:rRMSE ¼ RMSEa=RMSE0,
where RMSE0 is the root-mean-square error based on the traditional SV
model, and RMSEa is the root-mean-square error based on SV-MIDAS
model. If the rRMSE is less than 1, the RMSEa will be less than RMSE0.
It means that the SV-MIDAS model can improve the in-sample fitting
performance of the benchmark model.

From Table 3, we observe the following results. First, the parameter
estimates of θ are significantly positive. It implies that both monthly
range volatility and realized volatility shows significant positive influ-
ence on the stable component. This result is similar to that of Engle et al.
(2013); Zheng and Shang (2014); Shang and Liu (2017). Second, the
parameter estimates of optimal weight ω1 reveal the gradual decay trend
in the weight function.6 The parameter estimate of φ is significantly
positive, suggesting that the volatility process has strong autocorrelation.
The parameter estimate of ~φ is also significantly positive. But the auto-
correlation of is ~φless than that of φ. Third, the rRMSE results of both
SV-MIDAS-RV and SV-MIDAS-RG model are less than 1. This implies that
the in-sample fitting performance of the mixed-frequency SV model
outweighs that of the traditional SV model. One reason is that the new
time-varying stable component is identified via low frequency variable in
SV-MIDAS model. Therefore, we suggest that the improvements of the
in-sample fitting benefits from the low frequency information in
SV-MIDAS model. Fourth, the SV-MIDAS-RG model performs better than
the SV-MIDAS-RV model, which shows that the range volatility con-
tributes more to the mix-frequency SV model than the realized volatility.
t¼1 t t t¼1 t t t¼1 t t t

estimated conditional variance with SV model, σ2t is the proxy of volatility
calculated from daily range information.
6 As suggested in Engle et al. (2013), we estimate the parameter ω1 in Eq. (10)

and set ω2 ¼ 1.



Fig. 1. Log Return and Macro Variables of both China and the United States.
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Next we extract the time-vary behavior of stable component. The
time-varying stable component is an important feature for the SV-MIDAS
model. We can measure the time-varying feature of stable component via
Equation (9). This paper takes

ffiffiffiffi
τt

p
as the stable component of the daily

log return. Meanwhile, the conditional variance is represented

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2t;i� τt

q
. Their estimated results about the Chinese stock market are

plotted in Fig. 2.
From Fig. 2, we obtain the following observations. First, the stable

component is smoother than the conditional variance for both SV-
MIDAS-RV and SV-MIDAS-RG model. However, the stable component
shows a co-movement tendency with the conditional variance. Second,
the time-varying feature of stable component is identified in both SV-
MIDAS-RV and SV-MIDAS-RG model. But the traditional SV model fails
to measure this behavior. We suggest that this time-varying stable
466
component should play a crucial rule for volatility fitting and forecast.
The results in Table 3 have shown that the estimation of stable compo-
nent helps to improve the in-sample fitting performance. Moreover, the
discovery of the time-varying features also helps us reveal the new
volatility mechanism and then improve volatility forecast.

To test the reliability of these results, we apply the SV-MIDAS model
to the S&P 500 index. Table 4 reports the estimated results. First, most
estimated parameters are statistically significant. For example, the esti-
mates of θ are also significantly positive, which is similar to that in
Table 3. That is, a positive effect of low frequency volatility on the stable
component is also shown in the U.S. stock market. Second, using the
results of the rRMSE, we find that the SV-MIDAS model also shows the
better in-sample fitting performance in the U.S. stock market. Third,
different from China, the performance of SV-MIDAS-RG (2) does not



Table 3
Estimated results of the SV-MIDAS model (Shanghai Composite Index).

BSV SV-MIDAS (1)-RG SV-MIDAS (2)-RG SV-MIDAS (1)-RV SV-MIDAS (2)-RV

φ 0.9623
[0.9488, 0.9742]

– – – –

~φ – 0.9434
[0.9214, 0.9615]

0.9484
[0.9282, 0.964]

0.9455
[0.9213, 0.9647]

0.9385
[0.9223, 0.9641]

μ �8.4955
[-8.7066, �8.2887]

– – – –

ση 0.2747
[0.2346, 0.3160]

0.2561
[0.2130, 0.3027]

0.2390
[0.1993, 0.2840]

0.2305
[0.1927, 0.2738]

0.2421
[0.1986, 0.2878]

m – �8.9801
[-9.0478, �8.9251]

�8.9504
[-9.0205, �8.8610]

�9.1348
[-9.1802, �9.0915]

�8.9584
[-9.0402, �8.8936]

θ – 0.6614
[0.6066, 0.7324]

0.9273
[0.8806, 0.9720]

0.7708
[0.7011, 0.8246]

0.9043
[0.8626, 0.9611]

ω1 – 3.3845
[3.3286, 3.4488]

7.0972
[7.0576, 7.1360]

2.5673
[2.5021, 2.6739]

6.3376
[6.2873, 6.4015]

rRMSE – 0.8596 0.8415 0.8827 0.8655

Note:BSV is the traditional SV model. The reported parameter estimates are means of the posterior distribution. The value in parentheses is the 95% confidence interval.
rRMSE is the relative RMSE for a comparison of the in-sample fit between a SV-MIDAS model and the traditional SV model.

Y. Shang, T. Zheng Economic Modelling 95 (2021) 462–472
outweigh that of SV-MIDAS-RV (2) for the United States.
The above investigation shows that the mixed-frequency model can

identify the time-varying stable component. That component is primarily
affected by low-frequency volatility. However, these results provide
limited information for explaining the macroeconomic sources of vola-
tility. Following Engle et al. (2013) and Zheng and Shang (2014), we
introduce different macroeconomic variables7 to describe the stable
component of daily stock volatility. Because considerable studies, such as
Hamilton and Lin (1996) and Wachter (2013), have shown a close rela-
tionship between the macroeconomic economy and stock market vola-
tility, we introduce three crucial macroeconomic variables Composite
Leading Indicator, CPI and M1) into the SV-MIDAS model.8

Table 5 reports the results of the mixed-frequency SV model with
three different macroeconomic variables. To save space, we only report
the results of the SV-MIDAS (2) model because this model always per-
forms better than the SV-MIDAS (1) model. Moreover, for ease of com-
parison, we report the estimated results for both the Chinese and the U.S.
stock markets.

The results are presented as follows. First, the parameter estimate of θ
in the SV-MIDAS (2)-Lead model is significantly positive. It shows that
the volatility of the macroeconomic fundamentals has a positive effect on
the stable component of stock market volatility. This finding is similar to
that of Engle et al. (2013) and Zheng and Shang (2014). In addition, the
increase in the volatility of both the CPI and M1 also has a positive effect
on the stable component. Second, the values of rRMSE is always less than
1. These suggest that the in-sample fitting performances of the SV-MIDAS
model outperform those of the traditional SV model. Moreover, we find
the greater improvement in the fitting performance of the SV-MIDAS
model with macroeconomic variables in China, especially when using
the SV-MIDAS (2)-Lead model. In contrast, such an improvement is not
obvious for the U.S. stock market. This finding shows that the SV-MIDAS
model with macroeconomic variables is more effective in China, an
emerging market. Among the macroeconomic variables, the Composite
Leading Indicator exhibits the best performance for volatility modeling.

Why do macroeconomic variables play different rule between the
7 We consider the volatility of a macroeconomic variable. Empirically, the
volatility of a macroeconomic variable has better performance than the level of
the macroeconomic variable in mixed frequency volatility model specifications
(Zheng and Shang, 2014). According to Blanchard and Simon (2001) and Liu
and Liu (2005), we use the rolling window method to calculate time-varying
volatility.
8 The SV-MIDAS model is expressed by Eqs.(7)-(11). For example, we just

change Eq. (9) ln τt ¼ mþ θ
PP

p¼1ϕpðω1; ω2ÞXn
t�pto ln τt ¼ mþ

θ
P24

p¼1ϕpðω1;ω2ÞCPInt�p , then have the SVMIDAS(2)-CPI model.
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Chinese and U.S. stock market? We believe that one of the reasons is
rationality and efficiency of the stockmarket. For the U.S. stockmarket, it
has fully developed and consists of institutional investors who are more
rational. So it is more efficient than other stock markets. Instead, the
stock market in China is an emerging market. It consists of many indi-
vidual investors who are less rational than institutional investors. When
the macroeconomic shocks occur in these two stock markets, the situa-
tions reflecting these two stock markets are different. For the U.S. stock
market, the stock price has contained more macroeconomic shocks in-
formation since the rationality and efficiency of the stock market. At this
time, macroeconomic shocks show weaker effect to the stock price.
However, the Chinese stock market is more sensitive to macroeconomic
shocks because the market is less efficient and rational. Therefore,
macroeconomic shocks have played a more regulatory role in China’s
stock market volatility.

4.3. In-sample fitting of ASV-MIDAS model

In this section, we report the estimated results of the ASV-MIDAS
model using the MCMC method.9 As shown Table 6, we observe the
following results. First, the estimates of ρ are significantly negative,
implying that a leverage effect exists in both stock markets. In contrast, a
weaker leverage effect exists in China’s stock market compared with that
in the U.S. stock market. One reason is that China’s stock market has a
price limit, the maximum decline in a stock price is limited to 10% of its
last close price. This regulation weakens the leverage effect in China’s
stock market. In fact, the leverage effect in China’s stock market varies
form period to period. Shen and Zheng (2009) use the data form from
1990 to 2009 and find the anti-leverage effect of both Shanghai and
Shenzhen Index. Ouyang et al.(2014) and Jiang et al.(2017) point out
that Before the year 2000, the Shanghai and Shenzhen markets exhibited
the anti-leverage effect. After 2000, however, it gradually changed to the
leverage effect. Considering the data sample, our results are consistent
with that of Shen and Zheng (2009) and Ouyang et al.(2014). In sum,
there is a weak leverage effect exists in China’s stock market.

Second, compared with the SV-MIDAS model, the parameter esti-
mates of m, θ and ω1 are almost the same. In the case of leverage effect,
the volatility of the macroeconomic fundamentals also shows a positive
effect on the stable component. Third, the results of the rRMSE also show
that the ASV-MIDAS model outperforms the traditional SV model.
Moreover, the in-sample performance in China’s stock market using the
ASV-MIDAS model improves much more than that in the U.S. stock
9 Prior distribution of ρis that ρeUð � 1;1Þ.For the specification of the pos-
terior distribution, please refer to Nakajima and Omori (2009).



Fig. 2. Estimated daily conditional variance and its stable component (Shanghai Composite Index).

Table 4
Estimated results of the SV-MIDAS model (S&P 500).

BSV SV-MIDAS (1)-RG SV-MIDAS (2)-RG SV-MIDAS (1)-RV SV-MIDAS (2)-RV

φ 0.9870
[0.9810, 0.9923]

– – – –

~φ – 0.9606
[0.9471, 0.9724]

0.9493
[0.9323, 0.9639]

0.9582
[0.9487, 0.9712]

0.9569
[0.9425, 0.9696]

μ �9.4148
[-9.7505,-9.0869]

– – – –

ση 0.1483
[0.1260, 0.1735]

0.1928
[0.1642, 0.2244]

0.2108
[0.1787, 0.2465]

0.1945
[0.1654, 0.2307]

0.1987
[0.1695, 0.2321]

m – �10.1565
[-10.1957, �10.0721]

�9.9077
[-10.0164, �9.8550]

�10.0607
[-10.1201, �10.0205]

�10.1296
[-10.2246, �10.0234]

θ – 0.9945
[0.9560, 1.0456]

0.7422
[0.5820, 0.8626]

0.8833
[0.8436, 0.9311]

0.8574
[0.7969, 0.9125]

ω1 – 2.4099
[2.3487, 2.4908]

8.5833
[8.5179, 8.6473]

2.2735
[2.2017, 2.3802]

5.6079
[5.5664, 5.6484]

rRMSE – 0.9226 0.9092 0.9501 0.9081

Note:BSV is the traditional SV model. The reported parameter estimates are means of the posterior distribution. The value in parentheses is the 95% confidence interval.
rRMSE is the relative RMSE for a comparison of the in-sample fitting between a SV-MIDAS model and the traditional SV model.
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market.
4.4. Comparison of out-of-sample forecasts

Now let us discuss the out-of-sample forecast performance of the SV-
MIDAS and ASV-MIDAS models with different low-frequency variables.
Referring to Shang and Zheng (2018), we use the rolling window
approach to compute the results of the out-of-sample forecasts. Specif-
ically, using the data samples of a fixed window, we estimate the model
parameters and compute the one-step-ahead forecast values of daily
volatility. We set a forecast horizon from January 2, 2012 to June 30,
2015, for which the sizes of the forecast samples for China and the United
States are 845 and 877, respectively. We use the rRMSE to evaluate the
performance of the out-of-sample forecasts of the SV-MIDAS and
ASV-MIDAS models.

Table 7 reports the rolling window forecast results for all types of
mixed-frequency SV models. On the one hand, we find that all SV-MIDAS
models can improve forecast precision in the Chinese stock market,
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except for the SV-MIDAS (2)-M1 model. Among the SV-MIDAS models
with a macroeconomic variable, the SV-MIDAS (2)-Lead model has the
best performance. This result suggests that the leading index is an
important source of volatility in the Chinese stock market. In contrast to
in-sample fitting results, the out-of-sample forecast results for the ASV-
MIDAS model are inferior to those of the SV-MIDAS model. On the
other hand, for the U.S. stock market, the forecast results of the SV-
MIDAS model are similar to those of the Chinese stock market. The SV-
MIDAS (2)-Lead model also has the best performance among the SV-
MIDAS models with macroeconomic variables. Similarly, the out-of-
sample forecast results for the ASV-MIDAS model are worse than those
of the SV-MIDAS model. Comparing the values of the rRMSE of both SV-
MIDAS and ASV-MIDAS models, we find that the rRMSE in the Chinese
stock market is less than that of the U.S. stock market. Overall, the
forecast results of all types of mixed-frequency SV models are better for



Table 6
Estimated results of ASV-MIDAS model.

Panel A: Shanghai Composite Index

ASV-MIDAS (2)-RG ASV-MIDAS (2)-RV ASV-MIDAS (2)-Lead ASV-MIDAS (2)-M1 ASV_MIDAS (2)_CPI

ση 0.2983
[0.2549, 0.3480]

0.2986
[0.2558, 0.3471]

0.2092
[0.1802, 0.2423]

0.2051
[0.1767, 0.2366]

0.2407
[0.2028, 0.2838]

~φ 0.9403
[0.9218, 0.9585]

0.9419
[0.9237, 0.9576]

0.9912
[0.9861, 0.9956]

0.9928
[0.9890, 0.9963]

0.9759
[0.9650, 0.9851]

m �8.7424
[-8.7663, �8.6189]

�8.9975
[-9.0324, �8.8577]

�9.2091
[-9.2375, �9.0725]

�9.0470
[-9.1053, �8.8666]

�9.0900
[-9.1063, �9.0048]

θ 0.8539
[0.7728, 0.8780]

0.8603
[0.8456, 0.8744]

0.8234
[0.8012, 0.9155]

0.7862
[0.6898, 0.8213]

0.6989
[0.6877, 0.7098]

ω1 7.1970
[7.1617, 7.2161]

6.7952
[6.7624, 6.8154]

6.3774
[6.3510, 6.4152]

3.6931
[3.6647, 3.7324]

6.3440
[6.2977, 6.3767]

ρ �0.2220 [-0.3007,
�0.1413]

�0.2183
[-0.2967, �0.1373]

�0.1691
[-0.2622, �0.0772]

�0.1916
[-0.2797, �0.1007]

�0.1666
[-0.2527, �0.0770]

rRMSE 0.6930 0.6925 0.7214 0.7217 0.7089

Panel B: S&P 500 Index
ASV-MIDAS (2)-RG ASV-MIDAS (2)-RV ASV-MIDAS (2)-Lead ASV-MIDAS (2)-M1 ASV_MIDAS (2)_CPI

ση 0.2318
[0.2033, 0.2628]

0.2219
[0.1945, 0.2509]

0.1918
[0.1674, 0.2169]

0.1711
[0.1499, 0.1926]

0.1814
[0.1578, 0.2057]

~φ 0.9607
[0.9511, 0.9688]

0.9697
[0.9619, 0.9763]

0.9876
[0.9828, 0.9917]

0.9953
[0.9935, 0.9969]

0.9897
[0.9857, 0.9932]

m �9.8819
[-9.9249, �9.7372]

�9.9602
[-10.024, �9.8055]

�9.0930
[-9.1168, �9.0204]

�8.9301
[-8.9564, �8.8673]

�9.2629
[-9.2843, �9.2339]

θ 0.7949
[0.6952, 0.8273]

0.8004
[0.7114, 0.8438]

0.7395
[0.7248, 0.7547]

0.7557
[0.7173, 0.7738]

0.8325
[0.8180, 0.8468]

ω1 7.4097
[7.3740, 7.4461]

6.3990
[6.3815, 6.4230]

4.3798
[4.3456, 4.4107]

2.3420
[2.3180, 2.3622]

2.5526
[2.5236, 2.5805]

ρ �0.7552
[-0.8064, �0.6937]

�0.7259
[-0.7789, �0.6626]

�0.6705
[-0.7349, �0.5952]

�0.7065
[-0.7652, �0.6375]

�0.7028
[-0.7636, �0.6327]

rRMSE 0.7777 0.7758 0.7784 0.7879 0.7850

Note: The reported parameter estimates are means of the posterior distribution. The value in parentheses represents the 95% confidence interval. Panel A uses samples of
the Shanghai Composite Index. Panel B uses samples of the S&P 500 index.

Table 5
Estimated results of SV-MIDAS model with macro variables.

Shanghai Composition Index SP500 Index

SV-MIDAS (2)-Lead SV-MIDAS (2)-M1 SV-MIDAS (2)-CPI SV-MIDAS (2)-Lead SV-MIDAS (2)-M1 SV-MIDAS (2)-CPI

~φ 0.9943
[0.9906, 0.9975]

0.9950
[0.9918, 0.9978]

0.9893
[0.9835, 0.9945]

0.9969
[0.9945, 0.9989]

0.9937
[0.9901, 0.9969]

0.9897
[0.9844, 0.9942]

ση 0.1751
[0.1475, 0.2053]

0.1412
[0.1178, 0.1669]

0.1600
[0.1338, 0.1881]

0.1512
[0.1288, 0.1762]

0.1443
[0.1239, 0.1666]

0.1528
[0.1303, 0.1789]

m �8.8043
[-8.8914, �8.6756]

�8.7472
[-8.8208, �8.6807]

�8.7979
[-8.859, �8.7376]

�9.9703
[-10.088, �9.8713]

�10.0309
[-10.075, �9.9750]

�8.6501
[-8.7062, �8.5878]

θ 1.0477
[0.9716, 1.1112]

0.6631
[0.6118, 0.7304]

0.7128
[0.6183, 0.8367]

0.7757
[0.6988, 0.8260]

0.7812
[0.6690, 0.8805]

0.6792
[0.5709, 0.7641]

ω1 6.6175
[6.5488, 6.6848]

3.9808
[3.9406, 4.0180]

3.9124
[3.8702, 3.9801]

2.4409
[2.3987, 2.4780]

2.4179
[2.3312, 2.4967]

2.4776
[2.4338, 2.5178]

rRMSE 0.7974 0.8974 0.9503 0.9688 1.0254 0.9781

Note: The reported parameter estimates are the means of the posterior distribution. The value in parentheses represents the 95% confidence interval. SV-MIDAS(2)-
Lead, SV-MIDAS(2)-M1, and SV-MIDAS(2)-CPI represent the SV-MIDAS model with the Composite Leading Indicator, M1, and CPI, respectively. rRMSE is the rela-
tive RMSE for a comparison of the in-sample fit performances between a SV-MIDAS model and the traditional SV model.
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the Chinese market than for the U.S. market.
Furthermore, we test the forecast performance of SV-MIDAS model

and ASV-MIDAS model via Diebold and Mariano (1995)’s statistics10.
The null hypothesis of Diebold-Mariano (D-M) test is that there is the
same mean squared error for the two forecasts. This paper will compute
the D-M statistics and the corresponding results are shown in Table 8.

As reported in Table 8, the positive values of D-M statistics indicate
the better out of sample forecast performance of our mixed-frequency SV
model. Comparing with Table 8, we find that the SV-MIDAS models can
10 Diebold-Mariano test is used to determine whether forecasts are significantly
different. The Diebold-Mariano statistic is constructed by the residuals for the
two different forecasts. Under the null hypothesis that the two forecasts are not
different, D-M statistic follows a standard normal distribution: D-M ~ N(0, 1).
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significantly improve forecast precision in the Chinese stock market,
except for the SV-MIDAS (2)-M1 model. Similarly, the SV-MIDAS models
also have better out of simple performance in the US stock market. It
means that the SV-MIDAS models are significant superiority of the
traditional SV model’s forecasts. However, Diebold-Mariano statistics
shows that the ASV-MIDAS models can’t significantly better than the
corresponding ASV model’s forecasts.

5. Conclusion

In this paper, we develop a mixed-frequency SV model with macro-
economic variables and further extend it to the ASV-MIDAS model by
including a leverage effect. In terms of volatility decomposition, the
volatility components in the SV-MIDAS and ASV-MIDAS models are
decomposed into two components: a stable component and a stochastic



Table 7
Results of out-of-sample forecasting.

Shanghai Composite Index S&P 500 Index

SV-MIDAS rRMSE ASV-MIDAS rRMSE SV-MIDAS rRMSE ASV-MIDAS rRMSE

SV-MIDAS (2)-RG 0.5102 ASV-MIDAS (2)-RG 0.5685 SV-MIDAS (2)-RG 0.5782 ASV-MIDAS (2)-RG 0.9420
SV-MIDAS (2)-RV 0.5601 ASV-MIDAS (2)-RV 0.9546 SV-MIDAS (2)-RV 0.7335 ASV-MIDAS (2)-RV 1.0489
SV-MIDAS (2)-Lead 0.6827 ASV-MIDAS (2)-Lead 0.9800 SV-MIDAS (2)-Lead 0.7768 ASV-MIDAS (2)-Lead 1.0838
SV-MIDAS (2)-M1 1.1441 ASV-MIDAS (2)-M1 1.0574 SV-MIDAS (2)-M1 1.7765 ASV-MIDAS (2)-M1 1.4748
SV-MIDAS (2)-CPI 0.7061 ASV-MIDAS (2)-CPI 0.9648 SV-MIDAS (2)-CPI 0.8300 ASV-MIDAS (2)-CPI 1.1332

Note:The boldface indicates that the corresponding model has better performance in out-of-sample forecasting.

Table 8
D-M test of out-of-sample forecasting.

Shanghai Composite Index S&P 500 Index

SV-MIDAS D-M ASV-MIDAS D-M SV-MIDAS D-M ASV-MIDAS D-M

SV-MIDAS (2)-RG 5.1541*** ASV-MIDAS (2)-RG 2.4649** SV-MIDAS (2)-RG 19.9913*** ASV-MIDAS (2)-RG 1.3557
SV-MIDAS (2)-RV 5.1256*** ASV-MIDAS (2)-RV 0.7900 SV-MIDAS (2)-RV 13.9283*** ASV-MIDAS (2)-RV �0.2783
SV-MIDAS (2)-Lead 3.8208*** ASV-MIDAS (2)-Lead 0.6232 SV-MIDAS (2)-Lead 4.2799*** ASV-MIDAS (2)-Lead �2.8110
SV-MIDAS (2)-M1 �3.4722 ASV-MIDAS (2)-M1 �2.9019 SV-MIDAS (2)-M1 �31.0043 ASV-MIDAS (2)-M1 �9.8688
SV-MIDAS (2)-CPI 3.3055*** ASV-MIDAS (2)-CPI 0.6949 SV-MIDAS (2)-CPI 5.1515*** ASV-MIDAS (2)-CPI �3.8954

Note:D-M is Diebold-Mariano statistics. The boldface indicates that the corresponding model is significant better than the basic model in out-of-sample forecasting. *
denote significance at the 10% level. ** denote significance at the 5% level. *** denote significance at the 1% level.
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component. The stable component is crucial to link the low-frequency
variable, such as macroeconomic variable, to stock volatility. We
employ the MCMC method to realize the parameter estimation of both
the SV-MIDAS model and the ASV-MIDAS model by approximating it to a
mixture approximation model.

With an empirical investigation on the Chinese and U.S. stock mar-
kets, we can draw the following conclusions. First, the SV-MIDAS model
and its extension can describe the time-varying stable component, which
is useful to study the volatility mechanism and improve volatility fore-
casting. We find that the volatility of the macroeconomic fundamentals
has a positive effect on this time-varying stable component. It suggests
that the SV-MIDAS model can identify the macroeconomic volatility
source of stock volatility.

Second, the SV-MIDASmodel outperforms the traditional SVmodel in
the in-sample and out-of-sample performances. In particular, among the
macroeconomic variables, the Composite Leading Indicator has the best
performance in terms of fitting and forecasting the stock volatilities. This
suggests that the macroeconomic fundamental helps to fit and forecast
470
the stock market volatility. Moreover, the SV-MIDAS model improves
much more for China than for the United States in the in-sample and out-
of-sample performances.

Third, the results of the ASV-MIDAS model show that both the Chi-
nese and the U.S. stock markets have significant leverage effects. How-
ever, the leverage effect is weaker in China. The ASV-MIDAS model
shows the better in-sample fitting results than the corresponding
benchmark model. In the presence of leverage effect, the volatility of the
macroeconomic fundamentals also contributes to the stable component.
Nevertheless, the out-of-sample forecast performance for the ASV-MIDAS
model is inferior to the SV-MIDAS model.

In summary, the SV-MIDAS and extended ASV-MIDAS models with
macro variables are promising methods for improving the in-sample
fitting and out-of-sample predictions. The forecast results of mixed fre-
quency SV model provide practical implications for portfolio investment
and risk management. These mixed frequency SV models can also be
applied to forecast the volatility of other financial assets such futures and
options.
Appendix. MCMCalgorithm

1. Sampleβjs; h; y*

To sample β ¼ fφ; σηg from the posterior distribution πðβjs;h;y*Þ∝f ðy*jβ;s;hÞπðβÞwith the M-H algorithm. First, use a Kalman filter to compute f ðy*jβ;
s;hÞ; second, we obtain bβ ¼ fbφ; bσηg, which maximizes the posterior probability density πðβjs;h;y*Þ. We generate a candidate β*from a normal distri-
bution Nðβ*;Σ*Þtruncated over the region R ¼ fβ : jφj< 1;σ> 0g, where

β* ¼ bβ þ Σ*
∂log πðβjs; h; y*Þ

∂β

����
β¼bβ ;Σ�1

* ¼ �∂2 log π
�
β
��s; h; y*�

∂β∂β0

����
β¼bβ (26)

Let β take the current valueβ0; we accept the candidate β*with the probability

αðβ0; β*js; h; y*Þ¼min


πðβ*js; h; y*ÞfNðβ0jðβ*;Σ*ÞÞ
πðβ0js; h; y*ÞfNðβ*jðβ*;Σ*ÞÞ

; 1
�

(27)

2. Sample hjs; β; y*

Referring to Kim et al. (1998), we compute an augmented Kalman filter based on an approximating Gaussian state space model. Then, we sample
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hjs; β; y* using the simulation smoother (Durbin and Koopman, 2002). Given st ¼ k, the approximating linear Gaussian state space model can be
expressed as 

y*i;t
hi;tþ1

!
¼
�
ci;t
di;t

�
þ
�
Zi;thi;t
Ti;thi;t

�
þ
�
Gi;tui;t
Hi;tui;t

�
(28)

h1
��y*0eN�a1j0;P1j0

�
(29)

whereci;t ¼ mkZi;t ¼ 1Gi;t ¼ ðνk;0Þdi;t ¼ 0Ti;t ¼ φ, Hi;t ¼ ð0;σηÞui;teNð0; I2Þa1j0 ¼ 0,P1j0 ¼ σ2η=ð1 � φ2Þ
The Kalman filter can be written as:

hiþ1;tji;t ¼ di;t þ Ti;thi;tji�1;t þ Ki;tυi;t

Piþ1;tji;t ¼ Ti;tPi;tji�1;tL
0
i;t þ Gi;tG

0
i;t

υi;t ¼ y*i;t � Zi;thi;tji�1;t � ci;t

Fi;t ¼ Zi;tPi;tji�1;tZ
0
i;t þ HitðHit � Ki;tGi;tÞ

0

Ki;t ¼ Ti;tPi;tji�1;tZ
0
i;tF

�1
i;t

Li;t ¼ Ti;t � Ki;tZi;t

(30)

Referring to Durbin and Koopman (2002), using the simulation smoother to samplehjs;β;y*, setrn ¼ 0;Nn ¼ 0.Di;t ¼ F�1
i;t þ K 0

i;tNi;tKi;t ,ni;t ¼ F�1
i;t υi;t �

K 0
i;t ri;t . For fi; tg ¼ n;⋯;1, we have the following recursion:

Ci;t ¼ Gi;tG
0
i;t � Gi;tG

0
i;tDi;tGi;tG

0
i;t

κi;teNð0;Ci;tÞ
Vi;t ¼ Gi;tG

0
i;t

�
Di;tZi;t � K

0
i;tNi;tTi;t

	
ri�1;t ¼ Z

0
i;tF

�1
i;t υi;t þ Li;t ri;t � V

0
i;tC

�1
i;t κi;t

Ni�1;t ¼ Z
0 0

i;tF
�1
i;t Z

0
i;t þ L

0
i;tNi;tLi;t � V

0
i;tC

�1
i;t Vi;t

(31)

We take the value ofy*i;t -Gi;tG
0
i;tni;t -κi;tas the sample result of ci;t þ Zi;thi;t .

3. Sample sjβ; h; y*

To sample st , for any k ¼ 1;⋯;K, we need to compute the following posterior distribution:

πðst ¼ kjβ; h; y*Þ∝qk 1νi;t exp
(�

y*i;t � mk � hi:t
	2

2ν2i;t

)
exp


� ðhiþ1:t � φhi:tÞ2

2ση
2

�
(32)

for any date samplefi; tg ¼ 1;⋯;n, we need to sample st from K independent discrete distributions.

4. Sample fm; θ;ωgjβ; s; h; y

Referring to Chib and Greenberg (1995) and Koop (2003), we sample γ ¼ fm; θ;ωg using a random-walkM-H algorithm. We draw the candidateγ*by
the following equation:

γ* ¼ γ þ c2*z (33)

where c is a scale parameter that takes value of 0.1, zis an increment that is sampled from Student’s t-distribution. The posterior distribution of γcan be
written as

πðγjβ; h; s; y*Þ∝
XK
k¼1

qk
1
νi;t

exp

�

yi;t � τtðγÞ � mk � hi:t
�2

2ν2i;t

�
exp


� ðhiþ1:t � φhi:tÞ2

2σ2η

�
(34)

where τtðγÞ ¼ mþ θ
PK
k¼1

ϕkðω1;ω2ÞRVt�k.Let γtake the current value γ0; we accept the candidate γ*with the probability

αðγ0; γ*jβ; s; h; y*Þ¼min


πðγ*jβ; s; h; y*Þ
πðγ0jβ; s; h; y*Þ

; 1
�

(35)
471
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.econmod.2020.03.013.
References

Alizadeh, S., Brandt, M.W., Diebold, F.X., 2002. Range-based estimation of stochastic
volatility models. J. Finance 57, 1047–1091.

Asgharian, H., Hou, A.J., Javed, F., 2013. The importance of the macroeconomic variables
in forecasting stock return variance: a GARCH-MIDAS Approach. J. Forecast. 32 (7),
600–612.

Bansal, R., Yaron, A., 2004. Risks for the long-run: a potential resolution of asset pricing
puzzles. J. Finance 59, 1481–1509.

Becker, R., Clements, A., 2007. Forecasting stock market volatility conditional on
macroeconomic conditions. National Centre for Econometric Research (NCER)
Working Paper Series, (18) 1–33.

Blanchard, O., Simon, J., 2001. The long and large decline in US output volatility.
Brookings Pap. Econ. Activ. 135–174, 2001 2001(1).

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity.
J. Econom. 31 (3), 307–327.

Chan, J.C.C., Grant, A.L., 2016. Modeling energy price dynamics: GARCH versus
stochastic volatility. Energy Econ. 54, 182–189.

Chen, J., Xiong, X., Zhu, J., Zhu, X., 2017. Asset prices and economic fluctuations: the
implications of stochastic volatility. Econ. Modell. 64, 128–140.

Chib, S., Greenberg, E., 1995. Understanding the metropolis-hastings algorithm. Am.
Statistician 49 (4), 327–335.

Diebold, F X, Mariano, R S, 1995. Comparing predictive accuracy. J. Bus. Econ. Stat. 13
(3), 253–263.

Ding, L., Vo, M., 2012. Exchange rates and oil prices: a multivariate stochastic volatility
analysis. Q. Rev. Econ. Finance 52 (1), 15–37.

Durbin, J., Koopman, S.J., 2002. A simple and efficient simulation smoother for state
space time series analysis. Biometrika 89 (3), 603–616.

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica 50, 987–1007.

Engle, R., Lee, G., 1999. A permanent and transitory component model of stock return
volatility. In: Engle, R., White, H. (Eds.), Cointegration, Causality, and Forecasting: A
Festschrift in Honor of Clive W. J. Granger. Oxford University Press, pp. 475–497.

Engle, R.F., Ghysels, E., Sohn, B., 2013. Stock market volatility and macroeconomic
fundamentals. Rev. Econ. Stat. 95 (3), 776–797.

Engle, R.F., Rangel, J.G., 2008. The spline-GARCH model for low-frequency volatility and
its global macroeconomic causes. Rev. Financ. Stud. 21 (3), 1187–1222.

Ghysels, E., Santa-Clara, P., Valkanov, R., 2004. The MIDAS Touch: Mixed Data Sampling
Regressions.” Mimeo. Chapel Hill, N. C.

Hamilton, J.D., Lin, G., 1996. Stock market volatility and the business cycle. J. Appl.
Econom. 11 (5), 573–593.

Harvey, A., Ruiz, E., Shephard, N., 1994. Multivariate stochastic variance models. Rev.
Econ. Stud. 61 (2), 247–264.

Harvey, A.C., Shephard, N., 1996. Estimation of an asymmetric stochastic volatility model
for asset returns. J. Bus. Econ. Stat. 14 (4), 429–434.

Jensen, M.J., Maheu, J.M., 2010. Bayesian semiparametric stochastic volatility modeling.
J. Econom. 157 (2), 306–316.
472
Jiang, X.F., Zheng, B., Ren, F., et al., 2017. Localized motion in random matrix
decomposition of complex financial systems. Phys. Stat. Mech. Appl. 471, 154–161.

Kanaya, S., Kristensen, D., 2016. Estimation of stochastic volatility models by
nonparametric filtering. Econom. Theor. 32 (4), 861–916.

Kastner, G., Frühwirth-Schnatter, S., Lopes, H.F., 2017. Efficient Bayesian inference for
multivariate factor stochastic volatility models. J. Comput. Graph Stat. 26 (4),
905–917.

Kim, S., Shephard, N., Chib, S., 1998. Stochastic volatility: likelihood inference and
comparison with ARCH models. Rev. Econ. Stud. 65 (3), 361–393.

Koop, G.M., 2003. Bayesian Econometrics. John Wiley & Sons Inc.
Liu, J.Q., Liu, Z.G., 2005. The analysis of dynamic patterns and resources of output

volatilities in China’s business cycles. Econ. Res. J. 3, 26–35 ([in Chinese]).
Nakajima, J., Omori, Y., 2009. Leverage, heavy-tails and correlated jumps in stochastic

volatility models. Comput. Stat. Data Anal. 53 (6), 2335–2353.
Nelson, D.B., 1991. Conditional heteroskedasticity in asset returns: a new approach.

Econometrica 347–370.
Omori, Y., Chib, S., Shephard, N., et al., 2007. Stochastic volatility with leverage: fast and

efficient likelihood inference. J. Econom. 140 (2), 425–449.
Ouyang, F.Y., Zheng, B., Jiang, X.F., 2014. Spatial and temporal structures of four

financial markets in Greater China. Phys. Stat. Mech. Appl. 402, 236–244.
Parkinson, M., 1980. The extreme value method for estimating the variance of the rate of

return. J. Bus. 61–65.
Peiris, S., Asai, M., McAleer, M., 2017. Estimating and forecasting generalized fractional

long memory stochastic volatility models. J. Risk Financ. Manag. 10 (4), 23.
Sandmann, G., Koopman, S.J., 1998. Estimation of stochastic volatility models via Monte

Carlo maximum likelihood. J. Econom. 87 (2), 271–301.
Shang, Y., Liu, L., 2017. An extension of stochastic volatility model with mixed frequency

information. Econ. Lett. 155, 144–148.
Shang, Y., Zheng, T., 2018. Fitting and forecasting yield curves with a mixed-frequency

affine model: evidence from China. Econ. Modell. 68, 145–154.
Shen, J., Zheng, B., 2009. On return-volatility correlation in financial dynamics. EPL

(Europhysics Letters) 88 (2), 28003.
Shyu, Y.W., Hsia, K., 2008. Does stock market volatility with regime shifts signal the

business cycle in Taiwan? Int. J. Electron. Finance 2 (4), 433–450.
Takahashi, M., Watanabe, T., Omori, Y., 2016. Volatility and quantile forecasts by

realized stochastic volatility models with generalized hyperbolic distribution. Int. J.
Forecast. 32 (2), 437–457.

Taylor, S.J., 1994. Modeling stochastic volatility: a review and comparative study. Math.
Finance 4 (2), 183–204.

Wachter, J., 2013. Can time-varying risk of rare disasters explain aggregate stock market
volatility? J. Finance 68 (3), 987–1035.

Yu, J., 2005. On leverage in a stochastic volatility model. J. Econom. 127 (2), 165–178.
Zheng, T.G., Wang, X., 2013. Measuring China’s business cycle with mixed-frequency

data and its real time analysis. Econ. Res. J. 6, 58–70 ([in Chinese]).
Zheng, T.G., Shang, Y.H., 2014. Measuring and forecasting the stock market volatility

based on macroeconomic fundamentals. The Journal of World Economy 12, 118–139
([in Chinese]).

https://doi.org/10.1016/j.econmod.2020.03.013
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref1
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref1
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref1
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref2
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref2
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref2
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref2
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref3
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref3
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref3
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref4
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref4
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref4
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref4
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref6
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref6
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref6
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref8
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref8
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref8
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref9
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref9
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref9
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref10
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref10
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref10
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref11
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref11
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref11
http://refhub.elsevier.com/S0264-9993(18)30009-9/opt34gli6aHoh
http://refhub.elsevier.com/S0264-9993(18)30009-9/opt34gli6aHoh
http://refhub.elsevier.com/S0264-9993(18)30009-9/opt34gli6aHoh
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref12
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref12
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref12
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref13
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref13
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref13
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref14
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref14
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref14
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref15
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref15
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref15
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref15
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref16
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref16
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref16
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref17
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref17
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref17
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref18
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref18
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref20
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref20
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref20
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref21
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref21
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref21
http://refhub.elsevier.com/S0264-9993(18)30009-9/opt99hJSwNJB3
http://refhub.elsevier.com/S0264-9993(18)30009-9/opt99hJSwNJB3
http://refhub.elsevier.com/S0264-9993(18)30009-9/opt99hJSwNJB3
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref22
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref22
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref22
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref23
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref23
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref23
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref24
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref24
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref24
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref25
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref25
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref25
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref25
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref29
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref29
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref29
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref30
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref30
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref31
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref31
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref31
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref33
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref33
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref33
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref34
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref34
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref34
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref35
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref35
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref35
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref36
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref36
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref36
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref37
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref37
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref37
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref39
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref39
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref40
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref40
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref40
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref41
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref41
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref41
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref42
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref42
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref42
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref44
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref44
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref45
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref45
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref45
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref47
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref47
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref47
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref47
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref48
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref48
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref48
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref49
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref49
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref49
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref50
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref50
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref51
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref51
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref51
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref54
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref54
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref54
http://refhub.elsevier.com/S0264-9993(18)30009-9/sref54

	Mixed-frequency SV model for stock volatility and macroeconomics
	1. Introduction
	2. The methodology
	2.1. Traditional SV model
	2.2. SV-MIDAS model
	2.3. ASV-MIDAS model
	2.4. MCMC estimation approach

	3. The data
	4. Empirical analysis
	4.1. Priors
	4.2. Estimation results
	4.3. In-sample fitting of ASV-MIDAS model
	4.4. Comparison of out-of-sample forecasts

	5. Conclusion
	Appendix. MCMCalgorithm
	1. Sampleβ|s,h,y∗
	2. Sample h|s,β,y∗
	3. Sample s|β,h,y∗
	4. Sample {m,θ,ω}|β,s,h,y

	Appendix A. Supplementary data
	References


