
Energy Economics 149 (2025) 108733 

A
0

 

Contents lists available at ScienceDirect

Energy Economics

journal homepage: www.elsevier.com/locate/eneeco  

Assessing energy sector resilience to adverse shocks: A scenario-based QVAR 

approachI

Shiqi Ye a,b ,∗,1, Hongyin Zhang d, Mo Zhou e, Tingguo Zheng c,d,e
a State Key Laboratory of Mathematical Sciences, AMSS, Chinese Academy of Sciences, China
b AMSS Center for Forecasting Science, Chinese Academy of Sciences, China
c Gregory and Paula Chow Institute for Studies in Economics, Xiamen University, China
dWang Yanan Institute for Studies in Economics, Xiamen University, China
e School of Economics, Xiamen University, China

A R T I C L E  I N F O

Keywords:
Energy sector resilience
Adverse shocks
Scenario-based analysis
Geopolitical risk

 A B S T R A C T

Global energy sectors face heightened uncertainty due to effects of major global events, volatile energy prices, 
and geopolitical risks. To better understand how these factors affect energy sectors, this paper examines 14 
key energy sectors worldwide, analyzing their resilience to shocks from oil, natural gas, and coal prices over 
the sample period from January 2006 to August 2024. Specifically, we propose a scenario-based approach 
based on QVAR model to measure time-varying resilience from the perspectives of intensity and duration. 
Additionally, we explore how economic policy uncertainty (EPU), geopolitical risks (GPR) and market volatility 
(VIX) influence energy sectors’ resilience. Results show that the resilience indices effectively capture the energy 
sector’s ability to withstand extreme shocks. Major events like Russia–Ukraine conflict and COVID-19 pandemic 
significantly alter both intensity and duration of resilience. Influence factor analysis reveals that increases in 
EPU, GPR, and VIX weaken resilience by reducing intensity and increasing duration, with the most pronounced 
impact observed in the sharp price fluctuations of oil and gas driven by rising GPR. The findings provide timely 
insights for policy adjustments to stabilize energy markets and guide investment strategies to mitigate potential 
risks.
1. Introduction

Global energy sectors are currently navigating a period of significant 
uncertainty. The lingering effects of COVID-19 on inflation, employ-
ment, and supply chains have yet to subside (Lin and Su, 2021; Gong 
et al., 2022; Sun et al., 2023). Regional conflicts like the Russia–
Ukraine war have further exacerbated the situation (Lin and Ullah, 
2024; Zheng et al., 2024b). Additionally, rapid shifts in international 
relations and fluctuations in the supply of critical energy resources, 
such as crude oil, natural gas, and coal, have had a profound impact 
on the energy sectors of many countries (Lin et al., 2024; Xu et al., 
2024; Wang et al., 2020; Liu and Li, 2018). Moreover, the increase 
in geopolitical risks (GPR) and economic policy uncertainty (EPU) has 
posed significant challenges to the stability of the energy sector (Lin 
and Zhao, 2023; Khan et al., 2023; Zheng et al., 2024a). In this 
context, assessing the impact of adverse shocks on the energy sector 
has become a critical issue that demands immediate attention. Such 
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analysis not only facilitate the identification of systemic vulnerabilities 
but also provides policymakers with empirically validated frameworks 
to enhance macroeconomic resilience.

Against this backdrop, the escalating impacts of geopolitical risks, 
economic policy uncertainty, and market volatility (VIX) on energy 
sector stability have become a pressing concern. Specifically, (Soy-
bilgen et al., 2019) argued geopolitical tensions may disrupt the en-
ergy supply chain, distorting the market. Banna et al. (2023) showed 
political unrest, like that from territorial disputes, could have long-
term energy market effects. Yilmazkuday (2024) found rising global 
geopolitical risks raise long-term energy uncertainties. Regarding eco-
nomic policy uncertainty, scholars revealed its significant link to carbon 
emissions (Adams et al., 2020; Anser et al., 2021; Adedoyin et al., 
2021). Wei et al. (2021) indicated stationarity and cointegration be-
tween EPU and energy production, while Erzurumlu and Gozgor (2022) 
showed EPU impacts per capita final energy consumption. For market 
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volatility, Shaikh (2022) noted investors in the energy market are more 
volatile during tail events. Past research showed the U.S. VIX affects 
crude oil price swings (Liu et al., 2023; Dutta et al., 2021), and Bianconi 
and Yoshino (2014) found VIX key in explaining energy firm earnings 
changes. Clearly, these factors significantly influence the energy sector, 
and thus studying how their fluctuations affect energy sector risks is of 
great practical and academic value.

While these studies have established robust correlations between 
macro-risk factors and energy markets, a critical gap remains in un-
derstanding the nonlinear dynamics of extreme shock propagation. 
Specifically, the extant literature leaves two questions unanswered: to 
what extent and for how long will the energy sector be affected by
extreme adverse shocks? To address this, a comprehensive quantitative 
framework is required, along with one or more robust indicators. A 
closely related concept is ‘‘resilience’’, which originates from physics, 
engineering, and materials science, and aims to capture both the sever-
ity and duration of a sector’s response to adverse shocks. In recent 
years, particularly after 2010, the concept of resilience has gradually 
been applied to the field of economics. Resilience is assessed by the 
capacity of an economy to recover from exogenous shocks, reflecting its 
potential for adaptation and adjustment in the face of unforeseen dis-
turbances (Martin and Sunley, 2015, 2020). Researchers have used this 
framework to model economic systems, in order to assess the impact 
of various shocks on different economic variables within the system, 
including the regional (Sensier et al., 2016) and country-level economic 
growth (Diop et al., 2021), energy sector (Dong et al., 2021), urban-
rural income gap (Lin and Wang, 2024), and firm performance (Sun 
et al., 2024).

However, after reviewing the existing literature, we identify at least 
three limitations that make it difficult to address the aforementioned 
question. First, most current studies focus primarily on the impact of 
carbon emissions on the resilience of the energy sector (Dong et al., 
2021; Nepal et al., 2024), with few examining the shocks on the 
supply and demand sides, such as the effects of crude oil and natural 
gas shocks on energy resilience. In fact, these short-term and sharp 
fluctuations may pose even greater challenges to the resilience of the 
energy system. This paper focuses on 14 key energy sectors globally, 
specifically examining their resilience in response to shocks originate 
from the crude oil, natural gas, and coal prices.

Moreover, existing studies primarily examine relationships between 
variables at their conditional means within economic systems. How-
ever, mean-based analyses often overlook the heterogeneous and asym-
metric responses that emerge during major events (Adrian et al., 2019; 
Zheng et al., 2023a; Lv et al., 2024). When assessing energy resilience, 
it is crucial to capture how different sectors withstand extreme shocks 
and to evaluate the impacts across the entire distribution, particularly 
in the tails. To address these challenges, we employ a quantile vector 
autoregression (QVAR) model to construct a high-dimensional system 
encompassing energy sectors and major energy prices, including crude 
oil, natural gas, and coal. The choice of QVAR is motivated by its 
ability to model the full conditional distribution of responses rather 
than focusing solely on the mean. As emphasized by Ando et al. (2022), 
QVAR effectively identifies asymmetric and heterogeneous effects often 
missed by traditional approaches. Given our focus on extreme condi-
tions and tail risks, QVAR offers a more nuanced and comprehensive 
framework for analyzing how energy sector resilience differs across 
various extreme conditions.

Furthermore, the relationships between economic variables within 
an economic system often undergo structural changes (Gong et al., 
2022; Zheng et al., 2023b; Zhang et al., 2024). These relationships 
can vary significantly during major events, such as COVID-19 and 
the Russia–Ukraine conflict. Failing to account for these differences in 
time may lead to an overestimation of the resilience of energy sectors. 
Therefore, it is essential to thoroughly examine these variations over 
time. This paper identifies different scenarios faced by energy sectors 
at various time points by positioning them within different conditional 
2 
quantiles. This allows us to thoroughly examine how the resilience of 
energy sectors changes across different scenarios.

The main contributions of this paper lies in three aspects: model 
specification, indicator measurement, and empirical analysis. In terms 
of model specification, we build on the ideas of Chavleishvili and 
Manganelli (2024) and Yang et al. (2024) by incorporating 14 energy 
sectors, along with crude oil, natural gas, and coal commodities, into 
a QVAR system. The QVAR model captures their contemporaneous 
and intertemporal dependencies across different quantiles, particularly 
in extreme scenarios. Given the established role of the 1% quantile 
in assessing extreme tail risks within the Value-at-Risk (VaR) frame-
work (Wu and Yan, 2019; Taylor, 2008), this study emphasizes the 1% 
quantile to more precisely evaluate the extreme risks associated with 
potential ‘black swan’ events in nonlinear systems. Based on this, We 
propose a simulation-based method for calculating impulse response 
functions. These impulse response functions effectively capture the 
reactions of different conditional quantiles of various energy sectors 
to extreme idiosyncratic shocks, such as supply-side or demand-side 
disruptions in crude oil, natural gas and coal.

The second contribution of this paper lies in the development of 
a scenario-based approach to measure the time-varying resilience of 
energy sectors. Inspired by Ando et al. (2024), we derive the scenario 
for the system’s economic variables at a given time point by identifying 
the specific quantiles for each energy sector and the shock-originating 
variables. Based on this, we examine the impulse response functions 
of the shock variables and energy sectors across various quantiles, 
selecting the most extreme cases, then derive time-varying resilience 
indicators for energy sectors. Focusing on two dimensions: intensity and 
duration, results demonstrate that the estimated resilience indicators 
for energy sectors can accurately and promptly capture shifts in the 
resilience during major events.

The third major contribution of this paper stems from our empir-
ical findings. Building on the previously discussed methodology and 
indicator construction, we thoroughly examine the resilience of energy 
sectors under extreme shocks in crude oil, natural gas, and coal prices. 
Furthermore, we conduct panel regressions to investigate the effects 
of factors such as economic policy uncertainty, geopolitical risks, and 
market volatility on the resilience of energy sectors. The results of the 
resilience measurement indicate that the scenario-based time-varying 
metric effectively captures the energy sector’s capacity to resist extreme 
events in a timely and precise manner. Under major shocks such as 
the Russia–Ukraine conflict and the COVID-19 pandemic, resilience 
across different energy sectors weakened, manifesting as reduced in-
tensity and prolonged duration. During the Russia–Ukraine conflict, the 
most affected energy sectors concentrated in countries with generally 
lower resilience, while the impact of the COVID-19 pandemic was 
more widespread, leading to a broader, more generalized weakening 
of resilience across energy sectors. Moreover, the influencing factor 
analysis demonstrates that rising in EPU, GPR, and VIX also have a 
negative impact on resilience of energy sectors.

Measuring and analyzing the resilience of energy sectors during 
extreme scenarios is valuable for both policymakers and investors. For 
policymakers, having accurate and timely insights into the resilience of 
energy sectors enables targeted policy adjustments that can help pre-
vent severe energy market volatility from triggering systemic economic 
risks. For investors, being able to detect shifts in energy sector resilience 
allows them to adjust their investment strategies accordingly, making 
it more effective to anticipate and mitigate potential risks in the energy 
market.

The remainder of this paper is organized as follows: Section 2 
provides a literature review, covering the concept of resilience, its 
measurement methods, and influencing factors. Section 3 presents de-
scriptive statistics of the data, and further substantiate the motiva-
tion through quantile Granger causality tests. Section 4 introduces the 
proposed methodology, focusing on the measurement of simulation-
based quantile impulse response and scenario-based time-varying re-
silience. Section 5 discusses the empirical findings, analyzing the model 
estimates, resilience measurement results, and the factors affecting 
resilience. Section 7 offers concluding remarks.
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2. Literature review

This section first reviews the relevant literature to clarify the the-
oretical concept of resilience. We then examine existing studies on 
methodologies for measuring resilience, and finally, summarizes the 
literature on the influencing factors of resilience.

2.1. Theoretical foundation of resilience

Resilience is generally defined as the ability of an entity or system 
to respond to and adapt in the face of external shocks and disturbances. 
However, its interpretation varies across disciplines, with its meaning 
shifting depending on the specific context (Evans and Karecha, 2014). 
As a result, resilience theory has evolved into a complex framework 
encompassing various attributes, interpretations, and methodologies.

Resilience theory originally emerged in the fields of physics, en-
gineering, and materials science. In physics, resilience refers to the 
maximum energy a solid material can absorb while undergoing plastic 
deformation under external stress. It typically denotes a system or 
material’s capacity to withstand external disturbances and return to 
its initial or equilibrium state (Berkes and Folke, 1998). Over time, 
resilience theory expanded into ecology and psychology. In ecology, 
resilience refers to an ecosystem’s ability to recover from disturbances, 
focusing on its capacity to absorb, adapt to, and respond to external 
shocks. This concept describes an ecosystem’s resistance and recovery 
potential when facing human-induced or natural disasters (Hopkins, 
2008; Olsson et al., 2015; Meyer et al., 2018).

While the concept of resilience is well-established in the afore-
mentioned disciplines, its application in economics emerged relatively 
late. Before 2010, economic resilience remained in the conceptual 
stage, with no unified understanding in the field. Definitions at the 
time primarily borrowed from engineering and ecology, describing an 
economic system’s ability to withstand shocks and return to equilibrium 
post-shock (Briguglio, 2004). Since 2010, although a comprehensive 
theoretical framework for economic resilience has yet to fully develop, 
significant progress has been made. Many scholars now argue that 
economic resilience refers to an economy’s ability to recover swiftly 
from shocks, reallocate resources, adjust its industrial structure, and 
continue transforming and upgrading (Capello et al., 2015; Martin and 
Sunley, 2015; Sensier et al., 2016). In regional economics, Boschma 
(2015) defines economic resilience as a region’s capacity to withstand 
external shocks. Building on this, Wang et al. (2022) emphasize that 
regions differ in their ability to endure and recover from shocks, 
indicating significant variation in economic resilience across regions.

Energy is critical for economic growth, social stability, and na-
tional defense, making it essential for industrialization and urbaniza-
tion (Zhao et al., 2020; Alam et al., 2024). As a result, the concept of 
resilience has been increasingly applied to the energy sector. He et al. 
(2017) defines energy economic resilience as the minimum level of ex-
ternal recovery investment needed to restore production and limit total 
economic impact within a specified period. Gatto and Drago (2020) 
expands on this, describing energy resilience as a multidimensional 
concept that assesses the stability of energy systems when faced with 
economic, social, environmental, and institutional shocks, as well as 
their capacity to recover or improve. Dong et al. (2021) further inter-
prets energy resilience as the ability of energy systems to respond to and 
recover from external disturbances, including societal, environmental, 
and public health challenges.

2.2. Measurement of resilience

As discussed earlier, resilience reflects a sector’s ability to respond 
to adverse shocks. Thus, measuring and improving the resilience of 
the energy system has become a critical concern (Dong et al., 2021). 
As a physical concept, resilience has attracted significant attention, 
making the development of systematic measurement methods crucial 
3 
for risk monitoring. Current approaches to studying economic resilience 
can be grouped into three categories: case studies, indicator system 
construction, and economic and statistical modeling.

First, case studies have been widely used to assess economic re-
silience. Cowell (2013) examines two deindustrializing regions, using 
historical documents and expert interviews to evaluate their resilience 
across different economic stages. Similarly, Evans and Karecha (2014) 
combines historical analysis with a detailed study of urban innova-
tion clusters and technology sectors to explore Munich’s resilience to 
economic shocks, attributing it to the complex interplay of Germany’s 
political history and federal system.

Second, many studies have assessed economic resilience by con-
structing index systems. Briguglio et al. (2014) was one of the first to 
measure resilience through policy performance in four areas: macroe-
conomic stability, microeconomic efficiency, governance, and social 
development. Using data from 150 countries, Diop et al. (2021) de-
veloped the COVID-19 Economic Resilience Index to evaluate regional 
recovery from the pandemic. Cui et al. (2023) also created a mul-
tidimensional index to measure China’s Rural Economic Resilience, 
assessing the system’s capacity to respond to external shocks.

Finally, econometric modeling has gained traction in studying eco-
nomic resilience. Han and Goetz (2015) developed a dynamic model 
of economic variables and used impulse response analysis to examine 
the ‘‘absorption’’ and ‘‘rebound’’ capacities of regional economies in 
response to shocks, proposing a new method for measuring resilience in 
U.S. counties during the Great Recession. Di Pietro et al. (2021) applied 
a spatial general equilibrium model to assess the recovery capacity of 
EU regions under different types of recessionary shocks and explored 
recovery paths for economic systems.

Despite various definitions of energy resilience, quantifying it re-
mains challenging. Most studies rely on constructing indicator systems, 
where researchers select indicators based on theoretical frameworks 
and aggregate them into composite indices (Molyneaux et al., 2012; 
Banerjee et al., 2017; Gatto and Drago, 2020). However, these methods 
are inherently subjective. More importantly, given the interconnected-
ness of energy-economic systems, many sectors may be impacted by 
energy shocks simultaneously. To better capture these dynamics, we 
introduce a QVAR model to describe the relationships between energy 
sectors and shock variables across different quantiles. We then calculate 
quantile-based impulse response functions to quantify the performance 
of energy sectors under extreme shocks. Based on this, we propose a 
scenario-based resilience measurement method for timely and accurate 
assessment of energy sector resilience.

2.3. Influence factors

With growing interest in resilience and the refinement of its mea-
surement methods, recent research has increasingly focused on quanti-
fying resilience and exploring its underlying factors. These studies not 
only expand the theoretical framework of resilience but also provide 
a foundation for empirical analysis. Given the central role of energy 
in socio-economic development, with energy demand rising alongside 
economic growth (McLellan et al., 2012), we now focus on economic 
and energy resilience, systematically reviewing the literature about 
their influencing factors.

Research on the drivers of economic resilience highlights the sig-
nificant influence of real economy factors. Martin (2012) notes that 
technological disruptions, shifts in competitive dynamics, plant clo-
sures, and changes in government policies can challenge regional re-
silience. Christopherson et al. (2010) emphasize the strong link be-
tween market size and resilience. From an innovation perspective, Bris-
tow and Healy (2018) found that regions with stronger innovation 
capacity tend to be more resilient during economic crises. Similarly, 
studies by Storper and Scott (2009) and Di Caro (2017) show that 
human capital levels significantly impact resilience. Regional charac-
teristics also play a role. Di Pietro et al. (2021) found that responses 
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to shocks vary by region and depend on factors such as resource 
mobility, economic diversity, and financial constraints. Some scholars 
have examined the impact of exogenous events like COVID-19. Wang 
et al. (2022) used a panel vector autoregression model to show that 
pandemic severity had a negative effect on resilience, though timely 
lockdowns mitigated some of this impact.

Regarding the factors influencing energy resilience, Gatto and Drago 
(2020) highlight the link between renewable energy use and economic 
growth, suggesting a broad correlation between energy resilience and 
GDP. McLellan et al. (2012) emphasize the relationship between sus-
tainability and energy resilience, identifying six key indicators: contin-
uous, robust, independent, controllable, non-hazardous, and matched 
to demand. These indicators help energy systems maintain normal 
operations during extreme events. He et al. (2017) used an input–
output model to show that China’s energy resilience is closely tied to 
coal production, with coal recovery directly affecting the resilience of 
the energy sector. This suggests that energy resilience depends on the 
interconnectivity and recovery performance of different energy sectors 
when faced with shocks.

3. Data and motivating evidence

In measuring the resilience of the energy sector under shocks from 
energy commodity prices, we focus on two categories of variables. First, 
in terms of shock variables, we use the spot prices of three international 
energy commodities from Thomson Reuters: Brent Crude Oil Spot Price 
(CO), MLCX Natural Gas Spot Price (NG), and Newcastle Coal Spot 
Price (CL). Second, in terms of the energy sector, we collect MSCI 
Energy Equity Indices of 14 countries from Bloomberg, with reference 
to their energy import and export dependence. This allows us to capture 
how the energy sectors of different nations respond to shocks. To 
address the issue of trading day mismatches arising from time zone 
differences across international markets and to reduce computational 
complexity, we compute monthly log returns using the formula 𝑟𝑖𝑡 =
(log(𝑃𝑖,𝑡) − log(𝑃𝑖,𝑡−1)) × 100, where 𝑃𝑖,𝑡 represents the monthly closing 
price of the 𝑖th energy spot price or energy equity index. Considering 
that the integrity of the Indonesian energy equity index starts from 
2005, we set the sample period from January 2006 to August 2024.

Appendix Table A.1 presents the descriptive statistics for energy 
commodity and energy equity returns. We can observe that the majority 
of energy equity indices exhibit negative skewness. In terms of kurtosis, 
only Russian energy sector is greater than 3, indicating leptokurtic 
behavior. In addition, as confirmed by the ADF test, all series are found 
to be stationary at the 1% significance level. However, some series 
exhibit non-normality and volatility clustering, indicating limitations in 
traditional linear models based on conditional mean. This observation 
motivates the introduction of a scenario-based quantile approach in this 
paper, providing a more comprehensive view of the dynamics in the 
presence of extreme shocks and varying distributional behaviors.

To further illustrate the necessity of introducing the scenario-based 
quantile method in estimating impulse response functions, we conduct 
quantile Granger causality tests on the energy commodity and energy 
equity returns. The primary objective is to examine whether energy 
commodity returns have significant predictive power over energy eq-
uity returns across different quantiles. Specifically, for each pair of 
energy commodity and energy sector, we perform the Granger causality 
test across 99 quantiles, from the 1st to the 99th, with a maximum lag 
of 12 periods (representing one year in monthly data), and obtain the 
𝑝-values with the Wald test statistic.

Fig.  1 displays the distribution of the 𝑝-values for all asset pairs and 
quantiles by scatter points, with the color representing the energy com-
modity (crude oil, natural gas or coal). For each energy commodity, the 
average 𝑝-value across all energy sectors is calculated at each quantile, 
and a curve is fitted accordingly. Additionally, the black horizontal 
line at 10% marks the significance threshold. The scatter plot in Fig. 
1 shows that points falling within the 0%–10% significance range are 
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concentrated around the lower and upper quantiles. And the 𝑝-values 
tend to approach 1 around the median. Additionally, the three average 
𝑝-value curves only enter the 0%–10% interval at extreme quantiles, 
suggesting that energy commodities serve as significant Granger causes 
for global energy sectors only at these extreme quantiles. For further 
distribution of significant quantiles for different energy sectors, please 
refer to Appendix A.1 and Figure A.2.

In summary, the results indicate the Granger causality between 
energy commodity and energy sectors, particularly at the extreme 
quantiles. This reinforces our motivation to examine the response of 
energy sectors to shocks, from the perspective of extreme quantiles. 
However, the quantile Granger causality test also has its limitation, 
primarily due to the quantile regression framework it employs. This 
framework only incorporates the quantile information of the impacted 
variable (energy sector) and cannot account for that of the shock 
variable (energy commodity). In empirical research, such as the in-
ternational energy market considered here, extreme conditions often 
lead to high volatility in both energy commodities and energy equities. 
Therefore, both of them are likely to be at extreme quantiles. In such 
cases, capturing the interaction and predictive relationship between 
extreme quantiles is highly imperative.

In light of this, we introduce a scenario-based quantile approach. It 
not only allows for flexible selection of quantiles for the shock variable, 
but also enables the adjustment of the corresponding quantiles for other 
variables in the system, based on the scenarios observed in actual 
financial markets. By fully utilizing information from all quantiles, 
this approach provides a more realistic and adaptable framework to 
simulate energy market responses under various shocks. Through tens 
of thousands of simulations, it helps to deduce the potential impact of 
extreme shocks on the energy market, thus offering a valuable measure 
of the resilience and recovery capacity under extreme conditions.

4. Methodology

We now introduce the scenario-based time-varying resilience mea-
surements of the energy sectors proposed in this paper. We will first 
introduce a simulation-based quantile impulse response function under 
different quantiles. Then, we will discuss how, through billions of sim-
ulations, the scenario-based time-varying resilience of various energy 
sectors is characterized.

4.1. Simulation-based quantile impulse response function

Let 𝒚𝑡 = (𝒓′𝑡 ,𝒙
′
𝑡)
′ denote a 𝑁 × 1 vector of observations at time 𝑡, 

where 𝒓𝑡 are 𝑁𝑟×1 vector of log return of energy markets, and 𝒙𝑡 denote 
a 𝑁𝑥 × 1 log growth rate of some represents the logarithmic growth 
rates of several shock source variables, including crude oil prices, coal 
prices, and natural gas prices. Moreover, let 𝝉 = (𝜏1,… , 𝜏𝑁 )′ be a 𝑁 ×1
vector of quantiles, where 𝜏𝑖 ∈ (0, 1), 𝑖 = 1,… , 𝑁 . Our first goal is to 
estimate the conditional 𝜏𝑖-th quantile of each variable 𝑦𝑖,𝑡, given path 
information 𝑡−1, by assuming a vector autoregressive (VAR) process: 

𝝉
(

𝒚𝑡|𝑡−1
)

= 𝒄(𝝉) +
𝑝
∑

𝑖=1
𝑩𝑖(𝝉)𝒚𝑡−𝑖, (1)

for 𝑡 = 1,… , 𝑇 , where 𝑝 denotes the number of lag terms of the VAR 
process, 𝒄(𝝉) is a 𝑁 × 1 quantile-specific vector of intercept, and 𝑩𝑖(𝝉)s 
are 𝑁 ×𝑁 quantile-specific coefficient matrices. On the other word, for 
each variable 𝑦𝑖,𝑡 in 𝒚𝑡, we assume that 

𝜏𝑖 (𝑦𝑖,𝑡|𝑡−1) = 𝑐𝑖(𝜏𝑖) +
𝑝
∑

𝑖=1
𝜷 𝑖(𝜏𝑖)′𝒚𝑡−𝑖 (2)

where 𝑐𝑖(𝜏𝑖) is the 𝑖th element of 𝒄𝑖(𝝉) and 𝜷𝑖(𝜏𝑖) are 𝑖th row of 𝑩𝑖(𝝉)
for 𝑖 = 1,… , 𝑁 .

Moreover, Eq. (1) is equivalent to the following QVAR(𝑝) model: 

𝒚𝑡 = 𝒄(𝝉) +
𝑝
∑

𝑩𝑖(𝝉)𝒚𝑡−𝑖 + 𝜺𝑡(𝝉), (3)

𝑖=1
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Fig. 1. 𝑝-values of quantile Granger causality tests.
Notes: The figure shows the distribution of quantile Granger causality test 𝑝-values for all asset pairs. For each energy commodity, the average 𝑝-value across all energy equity 
indices is calculated at each quantile, and a curve is fitted accordingly. The color of each point and fitted curve represents the corresponding energy commodity: red for crude 
oil, green for natural gas and blue for coal. Additionally, the black horizontal line marks the 10% significance level. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
where 𝜺𝑡 = (𝜀1,𝑡,… , 𝜀𝑁,𝑡)′ is a 𝑁 × 1 vector of residuals that satisfies 
𝜏𝑖 (𝜀𝑖|𝑡−1 = 0). The stationarity condition of the QVAR model is 
similar to that of the VAR model.

The above QVAR model can be estimated by minimizing the follow-
ing check loss function: 

𝛱𝝉 (𝒄(𝝉),𝑩(𝝉)) =
𝑇
∑

𝑡=1

𝑁
∑

𝑖=1
𝜌𝜏𝑖

(

𝑦𝑖,𝑡 − 𝑐𝑖(𝜏𝑖) −
𝑝
∑

𝑖=1
𝜷 𝑖(𝜏𝑖)′𝒚𝑡−𝑖

)

, (4)

where 𝑩(𝝉) = [𝑩1(𝝉),… ,𝑩𝑝(𝝉)], 𝜌𝜏 (𝜇) denotes the check loss function 
with 𝜌𝜏 (𝜇) = (𝜏 − 𝐼(𝜇 < 0))𝜇, where 𝐼(⋅) is the indicator function. Fol-
lowing Chavleishvili and Manganelli (2024) and Yang et al. (2024), we 
obtain the parameter estimates in the QVAR(𝑝) model by minimizing 
Eq. (4) through equation-wise quantile regression. The lag term 𝑝 can 
be determined using the BIC method.

Based on the QVAR(𝑝) model, we are interested in estimating the 
𝜏𝑖-th Quantile Impulse Response Function (QIRF) of variable 𝑖 based 
on 𝜏𝑗 -th quantile-specific shock from variable 𝑗:

𝐺𝐼𝑦𝑖
(

𝐻, 𝜺∗𝑗,𝑡(𝝉),𝑡−1

)

= 𝜏𝑖

(

𝑦𝑖,𝑡+𝐻 | 𝜺∗𝑗,𝑡(𝝉) = 𝜺𝑡(𝝉) + 𝜹𝜏𝑗 ,𝑡−1

)

−𝜏𝑖

(

𝑦𝑖,𝑡+𝐻 | 𝑡−1
)

(5)

where 𝜏𝑖

(

𝑦𝑖,𝑡+𝐻 | 𝜺∗𝑗,𝑡(𝝉) = 𝜺𝑡(𝝉) + 𝜹𝜏𝑗 ,𝑡−1

)

 denotes the conditional 𝜏𝑖-
th quantile of 𝑦𝑖,𝑡+𝐻  given past information and a 𝜏𝑗 -th quantile specific 
shock 𝛿𝑗 from variable 𝑗, and 𝜏𝑖

(

𝑦𝑖,𝑡+𝐻 | 𝑡−1
) is the conditional 𝜏𝑖-th 

quantile of 𝑦𝑖,𝑡+𝐻  without shock given past information. Specifically, we 
choose the shock 𝜹𝜏𝑗  to be the contemporaneous effect of one standard 
error of the decorrelated residuals of the variable 𝑗. That is, we set 
𝜹𝜏𝑗 = 𝜴(𝝉)1∕2𝒆𝑗𝛿𝜏𝑗 , where 𝜴(𝝉) is the residual correlation matrix, 𝒆𝑗
is a vector with the 𝑗th element equals to one, and 𝛿𝜏𝑗  denotes the 
one-standard-error shock of the decorrelated residuals of the variable 
𝑗.

Economically speaking, let variable 𝑖 be the log return of the 
energy market, and variable 𝑗 be the shock source variable. 𝐺𝐼𝑦𝑖
(

𝐻, 𝒆∗𝑗,𝑡(𝝉),𝑡−1

)

 in Eq. (5) answer the following question: When there 
exists a strong 𝑗th variable specific shock (from the 𝜏𝑗 -th quantile) 
causes a rapid increase (or decrease) in the shock source variable 𝑗,
how and to what extent this shock affects the tail risk of returns (at the 
𝜏𝑖-th quantile) of the energy market 𝑖 after 𝐻 periods.

Since Eq. (3) does not rely on any distribution assumptions, as 
suggested by Lanne and Nyberg (2016), and Yang et al. (2024), it is 
natural to consider a simulation-based estimation method of the QIRFs. 
The details of the simulation-based estimation are shown in Appendix 
C.
5 
Note that our QIRF is different from the QIRF defined in Yang 
et al. (2024) in two aspects. First, since our QVAR model incorporates 
variable-specific conditional quantiles, referred to as specific ‘‘scenar-
ios’’ in Ando et al. (2024), the QIRF captures the effects of extreme 
shocks from one variable on another variable’s conditional quantile 
under these scenarios. Second, by assuming 𝜹(𝑚)𝜏𝑗

= 𝜴(𝝉)𝒆𝑗𝛿
(𝑚)
𝜏𝑗 , we 

account for the contemporaneous impact of quantile-specific positive 
and negative shocks.

4.2. Scenario-based time-varying resilience indices

Now we show how to estimate the scenario-based time-varying 
resilience indices of the energy sectors based on QIRFs in (5). For a 
specific energy market 𝑖 and shock source variable 𝑗, we first calculate
all the potential responses of variable 𝑖 under all possible shocks to 𝑗, given 
a time-related specific ‘‘scenario’’ for the other variables. To do this, we 
first estimate the QVAR models under different scenarios. Specifically, 
we let 𝝉 = 𝜏𝓁𝑁  where 𝜏 ∈ {0.01, 0.02,… , 0.99} and 𝓁𝑁  is a 𝑁 ×1 vector 
of ones, and estimate the model (3) at each 𝝉. This produces: 
{

𝒄̂(𝝉), 𝑩̂(𝝉) | 𝝉 = 𝜏𝓵𝑁 ; 𝜏 = 0.01,… , 0.99
}

. (6)

Since the model is estimated through equation-wise quantile regression, 
the set (6) is equivalent to 
{

𝒄̂(𝝉), 𝑩̂(𝝉) | 𝝉 = (𝜏1,… , 𝜏𝑁 )′; 𝜏𝑖 = 0.01,… , 0.99; 𝑖 = 1,… , 𝑁
}

. (7)

Based on (7), at each time point 𝑡, as suggested by Ando et al. 
(2024), for variable 𝑘 other than 𝑖 and 𝑗, we let 𝜏𝑘,𝑡 be the percentile 
of 𝑦𝑘,𝑡 at time 𝑡 given the sample distribution of 𝑦𝑘. Then, given the 
aforementioned scenarios of all the other variables at time 𝑡, we can 
obtain responses of variable 𝑖 at all possible quantiles given shocks from 
all possible quantiles of variable 𝑗: 
{

̂𝐺𝐼𝑦𝑖
(

𝐻, 𝜺∗𝑗,𝑡(𝝉 𝑡),𝑡−1

)

| 𝜏𝑘,𝑡 = 𝜏𝑘,𝑡; 𝜏𝑖,𝑡, 𝜏𝑗,𝑡 = 0.01,… , 0.99
}

. (8)

Given the scenario-based QIRFs for different quantiles of variable 𝑖
and 𝑗 from (8), we are particularly interested in the impulse response 
of variable 𝑖 under the ‘‘worst-case’’ scenario. To this end, given an 
extremely low quantile level 𝜏∗, we define the following time-varying 
response function: 

𝛷𝑡,𝑖←𝑗
(

𝐻, 𝜏∗
)

= 𝑞𝜏∗
(

{

̂𝐺𝐼𝑦𝑖
(

𝐻, 𝜺∗𝑗,𝑡(𝝉 𝑡),𝑡−1

)}0.99

𝜏𝑖 ,𝜏𝑗=0.01

)

, (9)

where the time-variation in 𝛷𝑡,𝑖←𝑗 (𝐻, 𝜏∗) comes from the scenario path 
(𝜏1,𝑘,… , 𝜏𝑇 ,𝑘) of each variable 𝑘 other than 𝑖 and 𝑗, and the quantile 
level 𝜏∗ control a degree of extremity. In this paper, we choose 𝜏∗ =
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Fig. 2. Quantile impulse responses of U.S. energy sector.
Notes: The figure provides an illustrative example of scenario-based quantile impulse response functions using the U.S. energy sector. It simplifies the model by fixing other variables 
at the median, while varying only the shock and response variables across 99 quantiles (from the 1st to the 99th) to represent different scenarios, resulting in 99 × 99 impulse 
response functions, as shown by the gray lines. The blue line represents the impulse response under the median scenario for both shock and response variables, while the red line 
connects the 1st quantile of the impulse response functions at each time point, representing the ‘‘worst-case’’ scenario. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
0.01, which refers to the worst 1% of cases in the 𝐻-period impulse 
response, out of a total of 9801 possible combinations of 𝜏𝑖 and 𝜏𝑗 .

Finally, referring to Tang et al. (2022), we assess the resilience 
of variable 𝑖 to shocks from variable 𝑗 at each time 𝑡 by calculating 
the 𝑖’s absorption intensity (𝑅𝑆𝐼𝐼𝑡,𝑖←𝑗 (𝐻, 𝜏∗)) and absorption duration 
(𝑅𝑆𝐼𝐷𝑡,𝑖←𝑗 (𝐻, 𝜏∗)):

𝑅𝑆𝐼𝐼𝑡,𝑖←𝑗 (𝐻, 𝜏∗) =

(

𝐻ℎ̄ −
𝐻
∑

ℎ=1
|𝛷𝑡,𝑖←𝑗

(

ℎ, 𝜏∗
)

|

)

∕𝐻ℎ̄, (10)

𝑅𝑆𝐼𝐷𝑡,𝑖←𝑗 (𝐻, 𝜏∗) =
𝐻
∑

ℎ=1

ℎ|𝛷𝑡,𝑖←𝑗 (ℎ, 𝜏∗) |
∑𝐻

ℎ=1 |𝛷𝑡,𝑖←𝑗 (ℎ, 𝜏∗) |
, (11)

where ℎ̄ = ℎ̄(𝑡,𝐻, 𝜏∗) equals to the largest |𝛷𝑡,𝑖←𝑗 (ℎ, 𝜏∗) | for ℎ =
1,… ,𝐻 .

The absorption intensity 𝑅𝑆𝐼𝐼𝑡,𝑖←𝑗 (𝐻, 𝜏∗) measures the ‘‘minimum 
surplus’’ of the variable 𝑖 after absorbing the shock from 𝑗 relative to the 
initial state, given the scenario at time 𝑡 and all possible combinations 
of quantiles for the response variable 𝑖 and the shock source variable 
𝑗. A higher 𝑅𝑆𝐼𝐼𝑡,𝑖←𝑗 (𝐻, 𝜏∗) indicates that the energy market 𝑖 recovers 
from the bottom (at ℎ̄) more quickly, implying stronger resilience at 
time 𝑡 to shocks originating from the shock source variable 𝑗.

Similarly, by assigning higher weights to more distant response peri-
ods ℎ, the absorption duration 𝑅𝑆𝐼𝐷𝑡,𝑖←𝑗 (𝐻, 𝜏∗) measures the ‘‘maximum 
duration’’ of the impact on variable 𝑖 from shocks originating from 
variable 𝑗, given the scenario at time 𝑡 and all possible combinations of 
quantiles for the response variable 𝑖 and the shock source variable 𝑗. A 
higher 𝑅𝑆𝐼𝐷𝑡,𝑖←𝑗 (𝐻, 𝜏∗) indicates that the impact on the energy market 
𝑖 lasts longer, suggesting weaker resilience to shocks from the variable 
𝑗 over time 𝑡.

5. Empirical results

This section first analyzes the impulse response results based on the 
QVAR model, comparing the differences between impulse responses un-
der extreme scenarios and those at the traditional median, highlighting 
the importance of examining responses across different quantiles. Next, 
we present the scenario-based time-varying resilience metrics, focusing 
on the intensity and duration, with a detailed analysis of resilience 
changes in the energy sectors during COVID-19 and the Russia–Ukraine 
war. We then use regression analysis to assess the impact of GPR, EPU, 
and VIX on the intensity and duration of resilience in energy sectors. 
Finally, a robustness check is provided to confirm the validity of these 
findings.

5.1. Quantile impulse response analysis

First, we provide an intuitive example and analysis of the scenario-
based quantile impulse response function. To facilitate  understanding, 
6 
we set all other variables in the system to their median and focus on 
the response of the U.S. energy sector to shocks from three energy 
commodities, as shown in Fig.  2. For each shock, there are 99 × 99 
scenarios based on the quantiles of energy commodity and energy 
equity returns, represented by 9801 gray lines in each subplot of Fig. 
2. Additionally, the blue line indicates the impulse response function 
when both quantiles are set to the median, while the red line marks the 
lower 0.01 quantile across all impulse response functions, representing 
the ‘‘worst-case’’ scenario.

A comparison between the median and the 0.01 quantile scenario 
in Fig.  2 reveals that the impulse response under the median scenario 
(blue line) is relatively mild, fluctuating between −0.1 and 0.1, and 
converging within three periods. In contrast, the 0.01 quantile impulse 
response (red line), representing the ‘‘worst-case’’ scenario, shows a 
much stronger response, reaching a low of −0.7 and taking nearly 
eight periods to converge. This finding suggests that it is inadequate 
to analyze adverse shocks based solely on the median scenario, as the 
impulse response under extreme scenarios is significantly more severe 
in both magnitude and duration. Therefore, the resilience measure 
and analysis in the following subsections will be anchored to the 0.01 
quantile impulse response function.2

Having established the focus on the 0.01 quantile, Fig.  3 illustrates 
the impulse response functions of energy sectors across all countries 
corresponding to Fig.  2. The preliminary results yield two key findings. 
First, regarding the heterogeneity among energy commodity shocks, 
the impulse responses are stronger under coal and natural gas shocks, 
reaching a minimum of −0.8, while the responses to crude oil shocks 
are weaker, with a low of −0.6. Second, concerning the heterogeneity 
among energy sectors, Russia (yellow line, RU) exhibits strong impulse 
responses to crude oil and coal shocks, with a longer response duration 
to natural gas; the U.S. (light blue line, US) shows a strong impulse 
response to natural gas and a prolonged response to coal; and Australia 
(dark blue line, AU) demonstrates a strong impulse response to crude 
oil, with a longer response duration to coal. These patterns may be 
associated with the significant export positions of Russia, the U.S., and 
Australia in the international energy market.

Furthermore, we relax the constraints on the scenarios, allowing 
other variables in the system to vary according to the actual scenarios 
in the market instead of being constrained to the median (Figs.  2 and 3). 
Specifically, in each month, we can calculate the 0.01 quantile impulse 
response function based on the actual quantiles of each variable within 
the sample distribution. This approach allows us to obtain scenario-
based impulse response functions in a general sense, which vary over 
time based on the actual dynamic evolution of the energy market.

2 To ensure the stability of the resilience measure, the 0.01 quantile is 
chosen here instead of the minimum.
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Fig. 3. Extreme impulse response of energy sectors.
Notes: The figure presents the impulse response functions of various energy sectors under the ‘‘worst-case’’ scenario, with each sector distinguished by color, following the approach 
of Fig.  2.
Fig. 4. Scenario-based quantile realization.
Notes: In the scenario-based framework, this figure illustrates the quantile positions of energy sectors and energy commodities, shown on the horizontal and vertical axes, 
respectively. Treating all time points as a set, each point represents the one-period-ahead impulse response under the ‘‘worst-case’’ scenario for a specific month. Additionally, 
points are color-coded to distinguish energy sectors. Given the density of data points, the figure emphasizes the overall quantile distribution while omitting sector-specific details, 
which can be found in Appendix Figure B.1.
In the scenario-based setting, Fig.  4 presents all quantile positions 
of the 0.01 quantile impulse response functions. The horizontal axis 
represents the quantiles of the energy sector, while the vertical axis 
represents the quantiles of energy commodities, with colors indicating 
different energy sectors. The forecast period for the impulse response 
is set to 1.3 Emphasizing the overall distributional pattern, the results 
in Fig.  4 show that the 0.01 quantile impulse response predominantly 
corresponds to the lower quantiles of the energy sector, as evidenced 
by the concentration of points in the left half of the plot. Meanwhile, 
the quantiles of energy commodities tend to cluster at both extremes—
specifically, specifically the lower 0–0.2 and the upper 0.8–1 quantiles. 
This suggests that extreme positive and negative shocks to energy 
commodity returns have a pronounced negative impact on the lower 
tail of the energy sector, thereby amplifying the distribution’s thick tail 
effect.

5.2. Scenario-based resilience indices

Based on the scenario-based quantile impulse response functions, 
we can calculate two resilience indicators, intensity and duration, by 
Eqs.  (10) and (11). First, we analyze intensity and duration changes 
of global energy sectors under adverse shocks in different scenarios, 
and then focus on the Russia–Ukraine conflict and COVID-19 pandemic 
periods to examine the heterogeneity in energy sector responses to 
specific adverse shocks.

3 The quantile positions for different forecast periods are generally 
consistent, see Appendix Figure B.1.
7 
First, to examine the overall resilience dynamics of global energy 
sectors under energy commodity shocks, Fig.  5 presents scenario-based 
measurements of resilience indicators, both intensity and duration, 
in response to crude oil shocks.4 Specifically, intensity measures the 
sectors’ ability to absorb shocks, where a higher value represents 
stronger recovery capacity and thus greater resilience. Duration cap-
tures the time required for recovery, with lower values indicating 
quicker recoveries and higher resilience. These two indicators enable 
us to capture the dynamic, scenario-based responses of energy sec-
tors, offering deeper insights into their resilience when facing external 
commodity price shocks.

The results in Fig.  5 show that periods of weaker resilience (darker 
blue) in the global energy sector are concentrated within six distinct 
time intervals (highlighted by black boxes). These intervals align with 
sharp fluctuations in energy spot prices, as depicted in Fig.  6. The global 
energy sector experienced several periods of weakened resilience, as 
illustrated in Fig.  5. Specifically:

(1) From June 2007 to May 2009, the global energy sector was 
significantly strained by the 2008 financial crisis, leading to a sharp 
decline in oil demand and prices. Prior to this, in 2007, geopolitical 
tensions and unrest in oil-producing regions like the Middle East and 

4 For the resilience measurements under natural gas and coal shocks, see 
Appendix Figure B.2 and Figure B.3. Overall, the resilience indicators of global 
energy sectors show similar patterns across different energy commodity shocks. 
A more detailed analysis of the heterogeneity in response to these shocks will 
be presented in the event analysis.
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Fig. 5. Scenario-based resilience under crude oil shock.
Notes: (1) The figure presents the scenario-based resilience measures of energy markets in response to crude oil shocks, where darker colors indicate weaker resilience. (2) To capture 
overall trends, black-boxed sections highlight six periods of generally weaker resilience: 2007.06–2009.05, 2011.08–2012.06, 2014.07–2016.04, 2018.09–2019.01, 2020.02–2021.02, 
and 2022.02–2022.10. (3) For the Intensity indicator, which ranges from 0 to 1, smaller values (darker colors) reflect weaker resilience, indicating a lower capacity of the energy 
sector to absorb shocks. (4) For the Duration indicator, which ranges from 0 to 12, larger values (darker colors) correspond to longer recovery times after shocks, also signaling 
weaker resilience.

Fig. 6. Energy commodity spot price.
Notes: The figure shows the monthly spot price of crude oil, natural gas, and coal. To facilitate analysis and comparison, the data has been Min-Max normalized, scaling the 
values between 0 and 1. Dashed lines mark the months when energy spot prices experienced significant fluctuations: June 2008, February 2020, and February 2022. Shaded areas 
indicate the periods corresponding to significant declines in resilience, as shown in Fig.  5.
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Table 1
Resilience of the Russia–Ukraine conflict scenario. 
 Crude oil Natural gas Coal

 Intensity Duration Intensity Duration Intensity Duration  
 India 0.64 (−0.08*) 3.66 (1.19) 0.66 (−0.09*) 3.53 (1.27*) 0.64 (−0.11*) 3.49 (1.25*)  
 Norway 0.66 (−0.04) 4.05 (1.45*) 0.72 (−0.02) 3.27 (1.07) 0.70 (−0.05) 3.47 (1.16)  
 Indonesia 0.64 (−0.04) 3.71 (0.96) 0.68 (−0.06) 3.07 (0.81) 0.70 (−0.05) 3.15 (0.91)  
 Spain 0.64 (−0.07) 3.73 (0.97) 0.68 (−0.07) 3.29 (0.80) 0.66 (−0.07) 3.23 (0.79)  
 Italy 0.67 (−0.06) 3.82 (1.17) 0.65 (−0.05) 3.39 (0.83) 0.62 (−0.11*) 3.55 (1.05)  
 Japan 0.57* (−0.14*) 4.71* (2.01*) 0.63 (−0.10*) 3.82 (1.26) 0.58* (−0.15*) 4.23* (1.70*) 
 France 0.65 (−0.06) 4.14 (1.29) 0.64 (−0.03) 3.83 (0.86) 0.67 (−0.02) 3.87 (1.01)  
 Korea 0.59* (−0.08*) 4.16 (1.24) 0.63 (−0.06) 3.87 (1.07) 0.64 (−0.07) 3.50 (0.88)  
 U.S. 0.60 (−0.12*) 4.47 (1.33) 0.62* (−0.12*) 4.60* (1.44*) 0.56* (−0.09*) 4.27* (1.13)  
 Australia 0.60 (−0.07) 4.68* (1.70*) 0.59* (−0.08*) 4.20* (1.27*) 0.56* (−0.11*) 4.33* (1.31*) 
 China 0.64 (−0.04) 4.85* (1.67*) 0.65 (−0.02) 4.55* (1.51*) 0.69 (−0.01) 4.21 (1.32*)  
 Netherlands 0.57* (−0.05) 5.13* (1.61*) 0.61* (−0.07) 4.96* (1.78*) 0.59 (−0.09) 5.29* (2.09*) 
 Russia 0.48* (−0.16*) 4.62 (1.20) 0.54* (−0.11*) 4.11* (0.96) 0.57* (−0.07) 4.10 (0.77)  
 Canada 0.57* (−0.05) 4.82* (0.62) 0.59* (−0.05) 4.01(0.07) 0.55* (−0.08) 4.48* (0.43)  
Notes: The table reports the mean values of scenario-based resilience indicators, intensity and duration, during the Russia–Ukraine conflict (2022 
Feb to 2022 Oct), with the difference from the full sample mean shown in parentheses. For each column of indicators, we use asterisks * to 
highlight the five energy sectors with the weakest resilience (or the most noticeable declines). For the intensity indicator, the smallest values 
are highlighted, while for the duration indicator, the largest values are marked.
Nigeria, combined with rising global demand, had already tightened oil 
supplies and increased market uncertainty.

(2) From August 2011 to June 2012, the European sovereign debt 
crisis and unrest from the Arab Spring, along with the sanctions on Iran, 
contributed to volatile energy markets.

(3) From July 2014 to April 2016, the global energy market faced a 
significant oversupply due to the surge in U.S. shale oil production and 
OPEC’s refusal to cut output, aiming to pressure shale producers. This 
resulted in a supply–demand imbalance, with crude oil and natural gas 
prices falling sharply, as noted by Liu and Li (2018).

(4) From September 2018 to January 2019, sanctions on Iran were 
less severe than expected, and with rising U.S. crude oil exports, the 
global market leaned toward oversupply, leading to a sharp drop in 
oil prices starting in October 2018. Additionally, the escalation of the 
U.S.-China trade war, heightened expectations of Federal Reserve rate 
hikes, and significant fluctuations in global stock markets collectively 
weakened the resilience of the energy sector.

(5) From February 2020 to February 2021, the outbreak of Covid-
19 and global lockdowns had a severe impact on the global economy 
and energy demand. With a sharp decline in aviation, transportation, 
and industrial activities, demand for oil and gas plummeted, causing oil 
prices to fall to near-zero levels in April 2020. Prior to the pandemic, 
a price war between Saudi Arabia and Russia had already led to an 
oversupply of oil, and the sudden drop in demand further depressed 
prices, undermining market balance and resilience.

(6) From February and October 2022, the Russia–Ukraine conflict 
triggered extreme volatility in global energy markets. As one of the 
world’s largest energy exporters, Russia faced sanctions from Western 
countries, particularly targeting its oil and gas exports. This led to 
significant strain on global supply chains and an energy crisis in Europe. 
Countries competed to find alternative energy sources, resulting in 
sharp increases in energy prices and damaging the resilience of the 
energy sector.

Second, after capturing the overall trends of resilience, we focus on 
two recent extreme events: the COVID-19 pandemic and the Russia–
Ukraine conflict, with the results displayed in Tables  1 and 2. For each 
event, we calculate the average resilience indicators within the period 
(as shown in Fig.  5) and present the deviation from the full sample 
average5 in parentheses. Additionally, the weakest resilience (or the 
largest decline in resilience) for each indicator is highlighted in bold. 
The energy sectors are ordered by full-sample average resilience, with 
the most resilient listed first.

5 The full sample average of each resilience indicator is provided in 
Appendix Table B.1.
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During the Russia–Ukraine conflict, as shown in Table  1, Russia’s 
energy sector experienced the lowest resilience intensity under crude 
oil and natural gas shocks (0.48 and 0.54), with significant declines 
compared to the averages (−0.16 and −0.11). The resilience of en-
ergy sectors in the U.S., China, Japan, the Netherlands, Canada, and 
Australia also saw considerable declines, with the impact on China’s 
energy market being reflected only in the duration indicator. Ad-
ditionally, aside from India and Japan, the energy sectors showing 
weaker resilience or notable declines (bold numbers in Table  1) are 
primarily concentrated in the lower half of the table. This suggests 
that countries facing resilience issues during the conflict were already 
sensitive to energy shocks throughout the entire sample period, and the 
Russia–Ukraine conflict further exacerbated these vulnerabilities.

For the COVID-19 pandemic, Table  2 presents the resilience of 
global energy sectors. The results show that the Netherlands and 
Canada consistently ranked at the bottom in terms of resilience indi-
cators. China’s energy sector also experienced significant deterioration, 
particularly in the intensity indicator for natural gas, which recorded 
the lowest value among all sectors. The duration indicators for the 
United States and Australia were relatively weak across all three energy 
shocks. Moreover, nearly all countries’ energy sectors faced significant 
resilience challenges, with bold numbers appearing across almost every 
energy sector. This indicates that, unlike the Russia–Ukraine conflict, 
the impact of the COVID-19 pandemic on the global energy sector was 
systemic. Even energy sectors that showed strong resilience throughout 
the full sample period, such as those in India, Norway, Indonesia, Spain, 
and Italy, were also heavily impacted during this period.

5.3. Influencing factor analysis

Based on the preceding analysis, the resilience of national energy 
sectors to shocks from various energy commodities fluctuates consid-
erably in response to major events. These shocks primarily arise from 
international conflicts, financial crises, and public health emergencies. 
This indicates that geopolitical risks, macroeconomic environment, and 
market sentiment may have a critical impact on the energy sector’s 
ability to absorb and recover from such disruptions.

In light of these findings, the subsequent section incorporates these 
elements into the analysis and investigates the underlying factors in-
fluencing energy resilience through the following linear regression 
model:

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑖𝑡 = 𝛼0 + 𝛽1𝑋𝑖𝑡 +
∑

𝑘
𝛿𝑘𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑘𝑖𝑦 + 𝜇𝑡 + 𝜂𝑖 + 𝜀𝑖𝑡 (12)
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Table 2
Resilience of the COVID-19 pandemic scenario (2020 Feb to 2021 Feb). 
 Crude oil Natural gas Coal

 Intensity Duration Intensity Duration Intensity Duration  
 India 0.65 (−0.07) 3.42 (0.95) 0.64 (−0.11*) 3.98 (1.72*) 0.64 (−0.11) 3.53 (1.29)  
 Norway 0.62 (−0.07) 3.71 (1.11) 0.65 (−0.10*) 3.73 (1.54) 0.64 (−0.11) 3.71 (1.40)  
 Indonesia 0.58* (−0.11) 3.96 (1.20) 0.62 (−0.12*) 4.20 (1.94*) 0.62 (−0.13*) 3.86 (1.62*)  
 Spain 0.59 (−0.12*) 4.05 (1.29*) 0.67 (−0.07) 4.18 (1.69*) 0.60 (−0.13*) 3.95 (1.52)  
 Italy 0.61 (−0.12*) 4.22 (1.56*) 0.58* (−0.12*) 4.03 (1.47) 0.62 (−0.12) 4.07 (1.57*)  
 Japan 0.64 (−0.06) 3.98 (1.27) 0.69 (−0.03) 3.96 (1.40) 0.61 (−0.12) 4.15 (1.61*)  
 France 0.60 (−0.11*) 3.97 (1.12) 0.59* (−0.07) 4.39* (1.43) 0.54* (−0.15*) 4.10 (1.24)  
 Korea 0.60 (−0.07) 4.00 (1.07) 0.60 (−0.08) 4.33 (1.53) 0.60 (−0.11) 4.03 (1.40)  
 U.S. 0.62 (−0.10) 4.46* (1.31*) 0.70 (−0.04) 4.57* (1.41) 0.53* (−0.12) 4.42* (1.27)  
 Australia 0.63 (−0.04) 4.28* (1.30*) 0.62 (−0.05) 4.48* (1.54*) 0.58* (−0.10) 4.65* (1.64*) 
 China 0.59* (−0.09) 4.35* (1.17) 0.56* (−0.11*) 4.31 (1.28) 0.58* (−0.11) 4.37* (1.48)  
 Netherlands 0.45* (−0.16*) 5.13* (1.60*) 0.60* (−0.08) 5.23* (2.05*) 0.54* (−0.14*) 4.99* (1.79*) 
 Russia 0.58* (−0.06) 4.07 (0.65) 0.62 (−0.03) 4.32 (1.17) 0.58* (−0.06) 4.06 (0.72)  
 Canada 0.49* (−0.13*) 4.86* (0.66) 0.57* (−0.07) 5.20* (1.26) 0.50* (−0.14*) 5.25* (1.20)  
Notes: The table reports the mean values of scenario-based resilience indicators, intensity and duration, during the COVID-19 pandemic scenario 
(2020 Feb to 2021 Feb), with the difference from the full sample mean shown in parentheses. For each column of indicators, we use asterisks 
* to highlight the five energy sectors with the weakest resilience (or the most noticeable declines). For the intensity indicator, the smallest 
values are highlighted, while for the duration indicator, the largest values are marked.
Table 3
Factors influencing energy resilience.
 Intensity Duration

 (I) (II) (III) (IV) (V) (VI)  
 Crude oil Nature gas Coal Crude oil Nature gas Coal  
 Panel A: The influence of geopolitical uncertainty on energy resilience
 GPR_𝐂 −0.137*** −0.140** −0.096* 0.083* 0.105** 0.069  
 (−2.725) (−2.559) (−1.883) (1.898) (2.252) (1.523)  
 Controls Yes Yes Yes Yes Yes Yes  
 Country-fixed Yes Yes Yes Yes Yes Yes  
 Time-fixed Yes Yes Yes Yes Yes Yes  
 Constant −0.422*** −0.423*** −0.443*** 0.243* 0.208* 0.312**  
 (−3.117) (−3.073) (−3.205) (1.925) (1.655) (2.458)  
 Obs 2,640 2,640 2,640 2,640 2,640 2,640  
 𝑅2 0.221 0.222 0.227 0.264 0.251 0.259  
 Panel B: The influence of economic policy uncertainty on energy resilience
 EPU _𝐂 −0.071** −0.068** −0.059** 0.105*** 0.099*** 0.095***  
 (−2.430) (−2.240) (−2.013) (3.720) (3.484) (3.330)  
 Controls Yes Yes Yes Yes Yes Yes  
 Country-fixed Yes Yes Yes Yes Yes Yes  
 Time-fixed Yes Yes Yes Yes Yes Yes  
 Constant −0.449*** −0.434*** −0.469*** 0.349** 0.286** 0.409***  
 (−3.112) (−2.942) (−3.204) (2.572) (2.131) (3.038)  
 Obs 2,195 2,195 2,195 2,195 2,195 2,195  
 𝑅2 0.224 0.201 0.212 0.267 0.238 0.252  
 Panel C: The influence of VIX Fear Index on energy resilience
 VIX −0.466*** −0.471*** −0.470*** 0.582*** 0.555*** 0.567***  
 (−15.991) (−15.868) (−15.796) (20.236) (19.449) (18.915)  
 Controls Yes Yes Yes Yes Yes Yes  
 Country-fixed Yes Yes Yes Yes Yes Yes  
 Time-fixed Yes Yes Yes Yes Yes Yes  
 Constant −0.479*** −0.479*** −0.523*** 0.361*** 0.307*** 0.434***  
 (−3.709) (−3.785) (−4.075) (3.080) (2.680) (3.749)  
 Obs 2,640 2,640 2,640 2,640 2,640 2,640  
 𝑅2 0.293 0.294 0.301 0.382 0.358 0.370  
Notes: The table reports the results of the two-way fixed effects model, with the results for the models using GPR, EPU, and VIX as explanatory 
variables presented in Panel A, B, and C, respectively. The 𝑡-statistics for the parameter estimates are in parentheses.
*** indicate statistical significance at 1%.
** indicate statistical significance at 5%.
* indicate statistical significance at 10%.
In Eq. (12), 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 refers to energy resilience, which is measured 
through two key indicators, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 and 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛. 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 represents 
the energy sector’s capacity to absorb shocks, with higher values in-
dicating stronger resilience. 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 measures the time required for 
recovery, with shorter duration indicating stronger resilience. Addition-
ally, the explanatory variables in Eq. (12) include national geopolitical 
10 
risk (𝐺𝑃𝑅_𝐶), economic policy uncertainty (𝐸𝑃𝑈 _𝐶), and the S&P 500 
volatility index (𝑉 𝐼𝑋). These variables are employed to assess the dy-
namics of geopolitical conditions, economic environments, and market 
sentiment fluctuations, respectively. The control variables (𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠) 
consist of annual macroeconomic indicators, which primarily include 
gross domestic product (𝐺𝐷𝑃 ), employment rate (𝐿𝑎𝑏), population 
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(𝑈𝑟𝑏𝑎𝑛_𝑝𝑜𝑝), industrial value added (𝐼𝑉 𝐴), and the trade openness 
to GDP ratio (𝑇 𝑟𝑎𝑑𝑒). Furthermore, the model incorporates monthly 
time-fixed effects 𝜇𝑡 and country-fixed effects 𝜂𝑖.6

First, Panel A of Table  3 presents the impact of geopolitical risk 
(𝐺𝑃𝑅_𝐶) on energy resilience. The results in columns (I) to (III) of 
Panel B show that the coefficient estimates for 𝐺𝑃𝑅_𝐶 are all negative, 
indicating that as geopolitical risk increases, the ability of national 
energy sectors to absorb shocks from crude oil, natural gas, and coal 
commodities weakens, with a particularly pronounced decline in the 
Intensity indicator when facing shocks from crude oil and natural gas. 
Additionally, in columns (IV) to (VI), the coefficients of 𝐺𝑃𝑅_𝐶 are all 
positive, and the coefficients related to crude oil and natural gas are 
higher and statistically significant. This indicates that an increase in 
geopolitical risk significantly prolongs the recover time of the energy 
sector in response to shocks from these two commodities. The underly-
ing rationale may lie in the fact that escalating geopolitical tensions 
disrupt energy supply chains and distort energy markets (Soybilgen 
et al., 2019), leading to supply instability and thereby impairing the 
sector’s absorptive capacity. Additionally, as demonstrated by Banna 
et al. (2023), political instability exerts persistent long-term effects on 
energy markets, which could necessitate extended adjustment periods 
for the energy sector.

Second, given that a country’s level of economic policy uncertainty 
typically reflect its economic environment through multiple dimensions 
such as policy uncertainty, market reactions, and growth expectations, 
this study further assess the impact of economic policy uncertainty 
(𝐸𝑃𝑈 _𝐶) on energy resilience indicators, with the results presented in 
Panel B of Table  3. The results in columns (I) to (III) indicate that an in-
crease in economic policy uncertainty significantly weakens the energy 
sector’s ability to absorb commodity price shocks, with this effect most 
pronounced in response to crude oil shocks. In addition, the results in 
columns (IV) to (VI) indicate that rising economic policy uncertainty 
not only significantly reduces the energy sector’s risk absorption ca-
pacity but also prolongs the duration of risk exposure, with the crude 
oil shock showing the greatest persistence. This phenomenon may stem 
from the challenges that heightened economic policy uncertainty poses 
in anticipating regulatory frameworks, which destabilizes energy pro-
duction, consumption, and investment. Furthermore, such uncertainty 
exacerbates disruptions to energy production through price shocks and 
oil shortages (Adedoyin et al., 2021), thereby limiting the sector’s 
ability to hedge against price volatility in commodities like crude oil 
via technological upgrades or inventory management. Additionally, as 
noted by Erzurumlu and Gozgor (2022), economic policy uncertainty 
influences per capita final energy consumption, and its fluctuations 
may induce demand-side instability, consequently extending recovery 
periods.

Finally, we selects the S&P 500 Volatility Index (𝑉 𝐼𝑋) as a rep-
resentative measure of market panic sentiment to examine its impact 
on the energy sector’s risk absorption and resilience capabilities. The 
relevant results are shown in Panel C of Table  3. In columns (I) to 
(III) of Panel C of Table  3, the 𝑉 𝐼𝑋 coefficients are all negative 
and significant at least at the 5% confidence level, indicating that 
the intensification of market panic sentiment significantly weakens the 
energy sector’s ability to absorb shocks from commodities such as crude 
oil, natural gas, and coal. Moreover, the results in columns (IV) to 

6 The data sources for the variables include various authoritative databases 
and research findings. Firstly, the macroeconomic data is sourced from the 
World Development Indicators (WDI) database. Secondly, the Economic Policy 
Uncertainty Index is based on the index published by Baker et al. (2016), 
and the geopolitical risk index is derived from the geopolitical risk index 
constructed by Caldara and Iacoviello (2022) using newspaper word frequency 
analysis. Additionally, financial data is obtained from the Wind Financial 
Terminal. The data spans the period from January 2007 to December 2023. 
Notably, the Economic Policy Uncertainty Index does not include data for 
Norway and Indonesia.
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(VI) show that the higher the VIX level, the longer the duration of 
commodity price shocks on the energy sector, further highlighting the 
significant negative impact of market sentiment on the resilience of the 
energy sector. As Shaikh (2022) demonstrates, during extreme market 
downturns, heightened volatility in energy market investor sentiment 
tends to trigger cross-asset sell-offs, substantially reducing liquidity in 
financialized energy commodity futures markets and thereby impeding 
price recovery. Additionally, Bianconi and Yoshino (2014) find that VIX 
fluctuations significantly affect energy firms’ earnings. We thus posit 
that VIX volatility may prolong energy market rebalancing periods by 
increasing financing costs and constraining corporate investment.

Building on the aforementioned analysis, it is evident that the risk 
absorption capacity of a nation’s energy sector in response to commod-
ity shocks exhibits a significant negative correlation with geopolitical 
risk, economic policy uncertainty, and the fear index. However, when 
confronted with shocks from commodities such as crude oil, natural 
gas, and coal, the duration of the impact on the energy sector is more 
susceptible to the effects of economic policy uncertainty and the fear 
index. This indicates that as levels of economic uncertainty rise and 
market panic intensifies, the impact of commodity shocks becomes 
more persistent, making short-term recovery more difficult. Thus, en-
hancing the energy sector’s resilience requires not only strengthening 
its internal structural robustness but also relying on national-level 
policy stability and effective market expectation management.

5.4. Robustness check

In order to check whether the selection of the ‘‘worst-case’’ scenario 
quantile impacts the conclusions of this paper, we replace the ‘‘worst-
case’’ scenario quantile from 0.01 to 0.05 and 0.1, respectively, for 
robustness test.

First, regarding the quantile impulse response results, Fig.  7 com-
pares the impulse response functions under different ‘‘worst-case’’ sce-
nario quantile selections. The 0.01, 0.05, 0.1 and 0.5 quantiles are 
represented by red, blue, yellow and black lines, respectively. It results 
show that due to the differences in quantiles, the impulse response 
functions naturally differ in magnitude. As the quantile approaches 
the median, the impulse responses gradually weaken, but the overall 
shape of the impulse response functions remain robust. Additionally, 
the difference between the 0.05 and 0.1 quantile impulse response 
functions is relatively small, while the gap between the 0.05 and 0.01 
quantiles is more pronounced. This suggests that the 0.01 quantile is 
more effective in capturing extreme scenarios, which is the basis for 
selecting it as the ‘‘worst-case’’ scenario in this paper.

Next, regarding the robustness of the resilience measures, Fig.  8, 
using the 0.05 quantile under crude oil shocks as an example, confirms 
the robustness of the intensity and duration resilience indicators. Ad-
ditionally, the complete resilience measures for natural gas and coal 
shocks, as well as under the 0.1 quantile, are provided in Appendix 
Figure B.4 to Figure B.7, with conclusions remaining robust. In Fig.  8, 
black boxes highlight the same six intervals of weakened resilience as 
in Fig.  5. Clearly, when the quantile shifts from 0.01 to 0.05, reducing 
the extremity, colors in the heatmap lighten overall, indicating an 
improvement in resilience. Nevertheless, under major event shocks 
highlighted by the black boxes, the 0.05 quantile setting still captures 
signals of weakened resilience to some extent.

Finally, regarding the analysis of influencing factors, Table  4
presents the regression results at the 0.05 and 0.1 quantiles, respec-
tively. Overall, the results remain robust, with GPR, EPU, and VIX 
still showing a significant negative relationship with the resilience of 
energy sectors. As previously observed, VIX continues to have the most 
substantial negative impact on the resilience indicators, while GPR has 
a relatively larger influence on the resilience of energy sectors under 
crude oil and natural gas shocks, consistent with the empirical findings. 
Additionally, comparing the results across different quantiles reveals 
some insightful findings. For instance, the negative impact of GPR 
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Fig. 7. Quantile impulse responses at different quantiles.
Notes: The figure presents a robustness test of the impulse response function for energy sectors (using the U.S. as an example) under different quantile scenarios, corresponding 
to Fig.  3 in the previous section. Specifically, other variables are held at their median, while the quantiles of the shock and response variables are varied, generating impulse 
response functions for 99 × 99 scenarios, shown by the gray lines. The red, blue, and yellow lines represent the impulse response functions connecting the 0.01, 0.05, and 0.1 
quantiles across all scenarios at each forecast horizon, respectively.
Fig. 8. Scenario-based resilience for crude oil shock at the 0.05 quantile.
Notes: The figure presents the robustness result for resilience measures of energy markets in response to crude oil shocks at the 0.05 quantile. For the intensity indicator, which 
ranges from 0 to 1, darker colors (smaller values) indicate weaker resilience, meaning that the energy sector’s ability to absorb shocks is lower. For the Duration indicator, which 
ranges from 0 to 12, darker colors (larger values) represent longer recovery times after shocks, also signaling weaker resilience. The black-boxed sections represent six periods of 
generally weaker resilience, consistent with Fig.  5. The resilience results in response to natural gas and coal shocks at the 0.05 quantile can be found in Appendix Figure B.4 and 
Figure B.5, while the 0.1 and 0.5 (median) quantile results are provided in Appendix Figure B.6 to B.9.
on the resilience of energy sectors under oil and gas shocks is most 
pronounced at the 0.01 quantile, with stronger significance compared 
to other quantiles, particularly in terms of intensity. In contrast, the 
negative impact on resilience under coal shocks is more significant at 
12 
the 0.05 and 0.1 quantiles. Furthermore, the influence of both EPU and 
VIX on resilience is relatively stronger at the 0.1 quantile. These results 
further underscore the heightened sensitivity of crude oil and natural 
gas to geopolitical risks, not only in terms of the size and significance 
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Table 4
Robustness results for influencing factor analysis.
 Intensity Duration

 (I) (II) (III) (IV) (V) (VI)  
 Crude oil Nature gas Coal Crude oil Nature gas Coal  
 Panel A: Factors influencing energy resilience at the 0.05 quantile
 GPR_C −0.102** −0.126** −0.109** 0.086** 0.105** 0.085*  
 (−2.189) (−2.548) (−2.145) (2.015) (2.317) (1.862)  
 EPU _C −0.078*** −0.086*** −0.088*** 0.112*** 0.126*** 0.117***  
 (−2.752) (−2.949) (−3.015) (3.980) (4.481) (4.142)  
 VIX −0.488*** −0.554*** −0.554*** 0.565*** 0.620*** 0.613***  
 (−16.752) (−18.716) (−18.332) (18.648) (21.437) (20.139)  
 Panel B: Factors influencing energy resilience at the 0.1 quantile
 GPR_C −0.070 −0.110** −0.116** 0.078* 0.092** 0.081*  
 (−1.599) (−2.301) (−2.436) (1.877) (2.078) (1.850)  
 EPU _C −0.090*** −0.100*** −0.113*** 0.119*** 0.139*** 0.132***  
 (−3.321) (−3.515) (−3.993) (4.267) (5.023) (4.711)  
 VIX −0.498*** −0.553*** −0.572*** 0.574*** 0.642*** 0.630***  
 (−17.358) (−18.204) (−18.869) (18.587) (21.855) (20.683)  
Notes: The table reports the robustness results of the two-way fixed effects model at the 0.05 and 0.1 quantiles, shown in Panel A and Panel 
B, respectively. For brevity, only the coefficient estimates of the key explanatory variables (GPR, EPU, and VIX) are presented. Full model 
estimation results can be found in Appendix Table B.2 and Table B.3. The 𝑡-statistics for the parameter estimates are in parentheses.
*** indicate statistical significance at 1%.
** indicate statistical significance at 5%.
* indicate statistical significance at 10%.
 

of the regression coefficients, but also in their concentration at the 
extreme 0.01 quantile. This reinforces and supplements the conclusions 
from the empirical analysis. When assessing global energy sector re-
silience in the face of adverse shocks, it is critical to pay closer attention 
to the extreme price fluctuations in oil and gas triggered by geopolitical 
conflicts. These extreme movements can exacerbate the weakening of 
resilience, making it an essential factor for policymakers and market 
participants to consider when evaluating potential vulnerabilities in 
global energy sector.

6. Policy implications

Our empirical analysis provides important insights into the dy-
namics of energy sector resilience under major external shocks. The 
scenario-based, time-varying resilience measure effectively captures 
sectoral responses to extreme events, revealing a significant weakening 
of resilience during global crises such as the Russia–Ukraine conflict 
and the COVID-19 pandemic. Specifically, the Russia–Ukraine conflict 
disproportionately affected energy sectors in countries with relatively 
lower baseline resilience, whereas the COVID-19 pandemic led to a 
more widespread and generalized erosion of resilience across the board. 
Moreover, panel regression results indicate that increases in economic 
policy uncertainty (EPU), geopolitical risk (GPR), and market volatility 
(VIX) systematically undermine energy sector resilience. Taken to-
gether, these results highlight the need for targeted policy interventions 
aimed at strengthening energy sector resilience and mitigating vulner-
ability to future external shocks. In light of these findings, we propose 
the following policy recommendations:

Establish Real-Time Monitoring of Energy Sector Resilience.
Governments and international organizations should establish real-
time monitoring systems to track the resilience of energy sectors. 
By leveraging scenario-based dynamic resilience metrics, policymakers 
can detect early warning signs of systemic vulnerabilities and imple-
ment timely interventions to enhance sectoral resilience and mitigate 
systemic risks. Such monitoring becomes particularly crucial during 
periods of heightened geopolitical tensions or economic instability.

Enhance Risk Absorption Capacity through Diversification. To 
buffer against external disruptions, energy sectors should prioritize the 
diversification of energy sources, supply chains, and trading partners. 
Policies that promote the adoption of renewable energy, encourage 
regional energy cooperation, and foster supply chain resilience can 
significantly reduce dependence on volatile fossil fuel markets and 
enhance overall sectoral resilience.
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Strengthen Institutional Stability to Counter Policy Uncert-
ainty, Geopolitical Risks, and Market Volatility. Policymakers should
seek to reduce economic policy uncertainty by maintaining transpar-
ent, predictable, and consistent regulatory frameworks. Diplomatic 
initiatives aimed at de-escalating geopolitical tensions and fostering 
international cooperation are essential to mitigating the adverse effects 
of geopolitical risks on energy sector resilience. Furthermore, efforts to 
enhance financial market stability — such as strengthening oversight of 
commodity markets, promoting market transparency, and developing 
risk management instruments — can mitigate the adverse impact of 
market volatility (VIX) on energy sector resilience.

Develop Comprehensive Contingency Plans for Extreme Events.
In light of the substantial disruptions caused by events such as the 
COVID-19 pandemic and the Russia–Ukraine conflict, governments, 
regulatory bodies, and energy companies should develop comprehen-
sive contingency plans. These should include the establishment of 
strategic energy reserves, the design of multi-level emergency response 
protocols, and the strengthening of coordinated international mecha-
nisms to stabilize global energy markets.

7. Concluding remark

This paper addresses the critical issue of energy sector resilience in 
the face of extreme shocks by developing a comprehensive framework 
that builds upon the quantile vector autoregression (QVAR) model. 
In a world where energy systems are increasingly vulnerable to dis-
ruptions caused by geopolitical tensions, economic instability, and 
natural disasters, understanding the degree to which these systems 
can absorb and recover from such shocks is essential. Through a de-
tailed exploration of 14 key global energy sectors and their reactions 
to crude oil, natural gas, and coal price shocks, we have provided 
valuable insights into the dynamics of energy resilience. Specifically, 
our scenario-based time-varying resilience metric allows for a more 
nuanced and timely understanding of how energy sectors withstand and 
recover from shocks under varying economic conditions. This frame-
work offers an innovative approach to assessing resilience, moving 
beyond traditional methods that rely on conditional means, and instead 
focusing on the tail risks that often arise during significant events, such 
as the COVID-19 pandemic and the Russia–Ukraine conflict.

The scenario-based dynamic resilience estimates reveal that during 
major events such as the 2008 global financial crisis, the European debt 
crisis, the Arab Spring, the Iran nuclear issue, U.S.-China trade tensions, 
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the Covid-19 pandemic, and the Russia–Ukraine conflict, sharp fluctu-
ations in international energy prices had a significant impact on energy 
sectors. Across 14 energy sectors, the intensity indicator decreased 
while the duration increased, signaling a reduced ability to absorb 
shocks and longer recovery times. This points to a significant deteri-
oration in resilience across the global energy sector. Furthermore, the 
event analysis shows that during the Russia–Ukraine conflict, the en-
ergy sectors experiencing the most significant weakening of resilience 
were primarily those already exhibiting lower resilience in the full 
sample, such as Russia, Australia, the U.S., Canada, China, and the 
Netherlands. In contrast, during the Covid-19 pandemic, nearly all en-
ergy sectors saw a marked decline in resilience, reflecting a widespread 
synchronized shock across global markets. Additionally, the analysis of 
influencing factors indicates that economic policy uncertainty (EPU), 
geopolitical risk (GPR), and market volatility (VIX) significantly affect 
the resilience of energy sectors. Increases in these factors tend to reduce 
the intensity of resilience while extending the recovery period. Among 
them, VIX has the most pronounced negative impact on both the risk 
absorption capacity and recovery ability of energy sectors. GPR exerts 
a relatively strong influence on risk absorption capacity, while EPU has 
the weakest impact on risk absorption but still contributes negatively 
to recovery ability to some extent.

The implications of this study are profound for both policymakers 
and investors. For policymakers, understanding the resilience of energy 
sectors in real-time can help inform targeted interventions that stabilize 
energy markets and mitigate the risks of systemic economic crises. By 
monitoring resilience indicators, governments can enact policies that 
address supply chain disruptions, price volatility, and other external 
shocks before they trigger broader economic instability. Investors, on 
the other hand, can use the resilience metrics developed in this paper to 
adjust their portfolios in response to shifts in energy sector resilience. 
The ability to anticipate changes in sector performance allows for more 
informed investment decisions, particularly in times of heightened 
geopolitical or economic uncertainty. In conclusion, this paper not 
only advances the academic understanding of energy resilience but 
also provides practical tools for addressing the challenges posed by an 
increasingly volatile global energy landscape. Further research should 
explore the application of this framework across other sectors and 
regions, as well as investigate how resilience can be strengthened in 
the face of evolving global risks.

Naturally, there is room for further improvement. For example, 
on the sectoral side, future research could incorporate a broader 
set of energy-related sectors. From a methodological perspective, it 
would also be valuable to integrate richer information sources, such 
as macroeconomic big data from FRED-MD—and extend the current 
framework to applications like factor-augmented QVAR (QFAVAR) 
models. These represent promising directions for future investigation.
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